An emerging theme in cell signaling is that membrane-bound channels and receptors are organized into supramolecular signaling complexes for optimum function and cross-talk. In this study, we determined how protein kinase C (PKC) phosphorylation influences the scaffolding protein Na ؉ /H ؉ exchanger regulatory factor 1 (NHERF) to assemble protein complexes of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel that controls fluid and electrolyte transport across cell membranes. NHERF directs polarized expression of receptors and ion transport proteins in epithelial cells, as well as organizes the homo-and hetero-association of these cell surface proteins. NHERF contains two modular PDZ domains that are modular protein-protein interaction motifs, and a C-terminal domain. Previous studies have shown that NHERF is a phosphoprotein, but how phosphorylation affects NHERF to assemble macromolecular complexes is unknown. We show that PKC phosphorylates two amino acid residues Ser-339 and Ser-340 in the C-terminal domain of NHERF, but a serine 162 of PDZ2 is specifically protected from being phosphorylated by the intact C-terminal domain. PKC phosphorylation-mimicking mutant S339D/S340D of NHERF has increased affinity and stoichiometry when binding to C-CFTR. Moreover, solution small angle x-ray scattering indicates that the PDZ2 and C-terminal domains contact each other in NHERF, but such intramolecular domain-domain interactions are released in the PKC phosphorylation-mimicking mutant indicating that PKC phosphorylation disrupts the autoinhibition interactions in NHERF. The results demonstrate that the C-terminal domain of NHERF functions as an intramolecular switch that regulates the binding capability of PDZ2, and thus controls the stoichiometry of NHERF to assemble protein complexes.
Na؉ /H ؉ exchanger regulatory factor (NHERF) is an adapter protein that is responsible for organizing a number of cell receptors and channels. NHERF contains two amino-terminal PDZ (postsynaptic density 95/disk-large/zonula occluden-1) domains that bind to the cytoplasmic domains of a number of membrane channels or receptors. The carboxyl terminus of NHERF interacts with the FERM domain (a domain shared by protein 4.1, ezrin, radixin, and moesin) of a family of actin-binding proteins, ezrin-radixin-moesin. NHERF was shown previously to be capable of enhancing the channel activities of cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that binding of the FERM domain of ezrin to NHERF regulates the cooperative binding of NHERF to bring two cytoplasmic tails of CFTR into spatial proximity to each other. We find that ezrin binding activates the second PDZ domain of NHERF to interact with the cytoplasmic tails of CFTR (C-CFTR), so as to form a specific 2:1:1 (C-CFTR) 2 ⅐NHERF⅐ezrin ternary complex. Without ezrin binding, the cytoplasmic tail of CFTR only interacts strongly with the first amino-terminal PDZ domain to form a 1:1 C-CFTR⅐NHERF complex. Immunoprecipitation and immunoblotting confirm the specific interactions of NHERF with the full-length CFTR and with ezrin in vivo. Because of the concentrated distribution of ezrin and NHERF in the apical membrane regions of epithelial cells and the diverse binding partners for the NHERF PDZ domains, the regulation of NHERF by ezrin may be employed as a general mechanism to assemble channels and receptors in the membrane cytoskeleton.Na ϩ /H ϩ exchanger regulator factor (NHERF) 2 is an adaptor protein that is responsible for organizing membrane channels and receptors (1, 2). NHERF was originally identified as an essential cofactor for inhibiting a transmembrane transporter sodium-hydrogen exchanger isoform 3 (NHE3) by the cAMP-dependent protein kinase A in the kidney proximal tubule cells (1). However, subsequent studies find that NHERF is densely distributed in the apical membranes of polarized epithelial cells of several mammalian tissues (2, 3) and that NHERF participates in organizing the trafficking, localization, and membrane targeting of a large number of membrane receptors and channels to which NHERF binds (3)(4)(5)(6)(7)(8)(9)(10)(11)(12).NHERF is a multidomain and multivalent protein that recruits different signaling partners. The amino terminus of NHERF contains two modular PDZ (name derived from the first three proteins that this domain was identified postsynaptic density 95/disk-large/zonula occluden-1) domains, PDZ1 and PDZ2 (see Fig. 1). The NHERF PDZ domains bind to the consensus PDZ-binding motif D(S/T)X(V/I/L) (X denoting any amino acid residue) at the carboxyl termini of a number of membrane channels or receptors (13)(14)(15)(16)(17)(18)(19). The carboxyl terminus of NHERF recognizes the FERM domain (a conserved domain that is shared by protein 4.1, ezrin, radixin, and moesin) of a family of cytoskeletal actin-binding proteins, ez...
The mammalian Na؉ /H ؉ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.
MicroRNAs (miRNAs) regulate apoptosis, yet their role in regulated necrosis remains unknown. miR-21 is overexpressed in nearly all human cancer types and its role as an oncogene is suggested to largely depend on its anti-apoptotic action. Here we show that miR-21 is overexpressed in a murine model of acute pancreatitis, a pathologic condition involving RIP3-dependent regulated necrosis (necroptosis). Therefore, we investigate the role of miR-21 in acute pancreatitis injury and necroptosis. miR-21 deficiency protects against caerulein- or L-arginine-induced acute pancreatitis in mice. miR-21 inhibition using locked-nucleic-acid-modified oligonucleotide effectively reduces pancreatitis severity. miR-21 deletion is also protective in tumor necrosis factor-induced systemic inflammatory response syndrome. These data suggest that miRNAs are critical participants in necroptosis, and miR-21 enhances cellular necrosis by negatively regulating tumor suppressor genes associated with the death-receptor-mediated intrinsic apoptosis pathway and could be a therapeutic target for preventing pathologic necrosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.