Fine-grained image classification methods often suffer from the challenge that the subordinate categories within an entry-level category can only be distinguished by subtle differences. Crop disease classification is affected by various visual interferences, including uneven illumination, dew, and equipment jitter. It demands an effective algorithm to accurately discriminate one category from the others. Thus, the representational ability of algorithm needs to be strengthened to learn a robust domain-specific discrimination through an effective way. To address this challenge, a unified convolutional neural network (CNN) denoting the matrix-based convolutional neural network (M-bCNN) was proposed. Its hallmark is the convolutional kernel matrix, whose convolutional layers are arranged parallelly in the form of a matrix, and integrated with DropConnect, exponential linear unit, local response normalization, and so on to defeat over-fitting and vanishing gradient. With a tolerable addition of parameters, it can effectively increase the data streams, neurons, and link channels of the model compared with the commonly used plain networks. Therefore, it will create more non-linear mappings and will enhance the representational ability with a tolerable growth of parameters. The images of winter wheat leaf diseases were utilized as experimental samples for their strong similarities among sub-categories. A total of 16 652 images containing eight categories were collected from Shandong Province, China, and were augmented into 83 260 images. The M-bCNN delivered significant improvements and achieved an average validation accuracy of 96.5% and a testing accuracy of 90.1%; this outperformed AlexNet and VGG-16. The M-bCNN demonstrated accuracy gains with a convolutional kernel matrix in fine-grained image classification. INDEX TERMS Convolutional neural network, fine-grained image classification, deep learning, convolutional kernel matrix, wheat leaf diseases.
Abstract. Traditional methods for detecting maize leaf diseases (such as leaf blight, sooty blotch, brown spot, rust, and purple leaf sheaf) are typically labor-intensive and strongly subjective. With the aim of achieving high accuracy and efficiency in the identification of maize leaf diseases from digital imagery, this article proposes a novel multichannel convolutional neural network (MCNN). The MCNN is composed of an input layer, five convolutional layers, three subsampling layers, three fully connected layers, and an output layer. Using a method that imitates human visual behavior in video saliency detection, the first and second subsampling layers are connected directly with the first fully connected layer. In addition, the mixed modes of pooling and normalization methods, rectified linear units (ReLU), and dropout are introduced to prevent overfitting and gradient diffusion. The learning process corresponding to the network structure is also illustrated. At present, there are no large-scale images of maize leaf disease for use as experimental samples. To test the proposed MCNN, 10,820 RGB images containing five types of disease were collected from maize planting areas in Shandong Province, China. The original images could not be used directly in identification experiments because of noise and irrelevant regions. They were therefore denoised and segmented by homomorphic filtering and region of interest (ROI) segmentation to construct a standard database. A series of experiments on 8 GB graphics processing units (GPUs) showed that the MCNN could achieve an average accuracy of 92.31% and a high efficiency in the identification of maize leaf diseases. The multichannel design and the integration of different innovations proved to be helpful methods for boosting performance. Keywords: Artificial intelligence, Convolutional neural network, Deep learning, Image classification, Machine learning algorithms, Maize leaf disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.