Nitrogen-rich heterocyclic compounds are important heterocyclic substances with extensive future applications for energetic materials due to their outstanding density and excellent physicochemical properties. However, the weak intermolecular interactions of these compounds are not clear, which severely limits their widespread application. Three nitrogen-rich heterocyclic compounds were chosen to detect their molecular geometry, stacking mode and intermolecular interactions by crystal structure, Hirshfeld surface, RDG and ESP. The results show that all atoms in each molecule are coplanar and that the stacking mode of the three crystals is a planar layer style. A large amount of inter- and intramolecular interaction exists in the three crystals. All principal types of intermolecular contacts in the three crystals are N···H interactions and they account for 40.9%, 38.9% and 32.9%, respectively. Hydrogen bonding, vdW interactions and steric effects in Crystal c are stronger than in Crystals a and b. The negative ESPs all concentrate on the nitrogen atoms in the three molecules. This work is expected to benefit the crystal engineering of heterocyclic energetic materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.