Abstract. Climate warming and engineering activities have various impacts on the thermal regime of permafrost in alpine ecosystems of the Qinghai-Tibet Plateau. Using recent observations of permafrost thermal regimes along the QinghaiTibet highway and railway, the changes of such regimes beneath embankments constructed in alpine meadows and steppes are studied. The results show that alpine meadows on the Qinghai-Tibet Plateau can have a controlling role among engineering construction effects on permafrost beneath embankments. As before railway construction, the artificial permafrost table (APT) beneath embankments is not only affected by climate change and engineering activities but is also controlled by alpine ecosystems. However, the change rate of APT is not dependent on ecosystem type, which is predominantly affected by climate change and engineering activities. Instead, the rate is mainly related to cooling effects of railway ballast and heat absorption effects of asphalt pavement. No large difference between alpine and steppe can be identified regarding the variation of soil temperature beneath embankments, but this difference is readily identified in the variation of mean annual soil temperature with depth. The vegetation layer in alpine meadows has an insulation role among engineering activity effects on permafrost beneath embankments, but this insulation gradually disappears because the layer decays and compresses over time. On the whole, this layer is advantageous for alleviating permafrost temperature rise in the short term, but its effect gradually weakens in the long term.
The Qinghai-Tibet Plateau is the largest permafrost region at low latitude in the world. Climate warming may lead to permafrost temperature rise, ground ice thawing and permafrost degradation, thus inducing thermal hazards. In this paper, the ARCGIS method is used to calculate the changes of ground ice content and active layer thickness under different climate scenarios on the Qinghai-Tibet Plateau, in the coming decades, thus providing the basis for hazards zonation. The method proposed by Nelson in 2002 was used for hazards zonation after revision, which was based on the changes of active layer thickness and ground ice content. The study shows that permafrost exhibits different degrees of degradation in the different climate scenarios. The thawing of ground ice and the change from low-temperature to high-temperature permafrost were the main permafrost degradation modes. This process, accompanied with thinning permafrost, increases the active layer thickness and the northward movement of the permafrost southern boundary. By 2099, the permafrost area decreases by 46.2, 16.01 and 8.5% under scenarios A2, A1B and B1, respectively. The greatest danger zones are located mainly to the south of the West Kunlun Mountains, the middle of the Qingnan Valley, the southern piedmont of the Gangdise and Nyainqentanglha Mountains and some regions in the southern piedmont of the Himalayas. The Qinghai-Tibet Plateau permafrost region is in the low-risk category. Climate warming exacerbates the development of thermal hazards. In 2099, the permafrost region is mainly in the middle-risk category, and only a small portion is in the low-risk category.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.