The 2016 Kumamoto earthquake, including two large (Mw ≥ 6.0) foreshocks and an Mw 7.0 mainshock, occurred in the Hinagu and Futagawa fault zones in the middle of Kyushu island, Japan. Here, we obtain the complex coseismic deformation field associated with this earthquake from Advanced Land Observation Satellite-2 (ALOS-2) and Sentinel-1A Interferometric Synthetic Aperture Radar (InSAR) data. These InSAR data, in combination with available Global Positioning System (GPS) data, are then used to determine an optimal four-segment fault geometry with the jRi method, which considers both data misfit and the perturbation error from data noise. Our preferred slip distribution model indicates that the rupture is dominated by right-lateral strike-slip, with a significant normal slip component. The largest asperity is located on the northern segment of the Futagawa fault, with a maximum slip of 5.6 m at a 5–6 km depth. The estimated shallow slips along the Futagawa fault and northern Hinagu fault are consistent with the displacements of surface ruptures from the field investigation, suggesting a shallow slip deficit. The total geodetic moment release is estimated to be 4.89 × 1019 Nm (Mw 7.09), which is slightly larger than seismological estimates. The calculated static Coulomb stress changes induced by the preferred slip distribution model cannot completely explain the spatial distribution of aftershocks. Sensitivity analysis of Coulomb stress change implies that aftershocks in the stress shadow area may be driven by aseismic creep or triggered by dynamic stress transfer, requiring further investigation.
We considered various non‐uniformities such as branch faults, rotation of stress field directions, and changes in tectonic environments to simulate the dynamic rupture process of the 6 February 2023 Mw 7.8 Kahramanmaraş earthquake in SE Türkiye. We utilized near‐fault waveform data, GNSS static displacements, and surface rupture to constrain the dynamic model. The results indicate that the high initial stress accumulated in the Kahramanmaraş‐Çelikhan seismic gap leads to the successful triggering of the East Anatolian Fault (EAF) and the supershear rupture in the northeast segment. Due to the complexity of fault geometry, the rupture speed along the southeastern segment of the EAF varied repeatedly between supershear and subshear, which contributed to the unexpectedly strong ground motion. Furthermore, the triggering of the EAF reminds us to be aware of the risk of seismic gaps on major faults being triggered by secondary faults, which is crucial to prevent significant disasters.
We considered various non-uniformities such as branch faults, rotation
of stress field directions, and changes in tectonic environments to
simulate the dynamic rupture process of the 6th February 2023 Mw 7.8
Kahramanmaraş earthquake in SE Türkiye. We utilized near-fault waveform
data, GNSS static displacements, and surface rupture to constrain the
dynamic model. The results indicate that the high initial stress
accumulated in the seismic gap leads to the successful triggering of the
East Anatolian Fault (EAF) and the supershear rupture in the northeast
segment. Due to the complexity of fault geometry, the rupture speed
along the southeastern segment of the EAF varied repeatedly between
supershear and subshear, which contributed to the unexpectedly strong
ground motion. Furthermore, the triggering of the EAF reminds us to be
aware of the risk of seismic gaps on major faults being triggered by
secondary faults, which is crucial to prevent significant disasters.
The high initial stress accumulated in the seismic gap leads to the successful triggering of the East Anatolian Fault.• The change of fault geometry in the southwest segment prevented the sustained supershear rupture.• The risk of earthquake nucleation on the secondary fault triggering the major fault rupture and the related disaster was highlighted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.