We introduce ABC-Dataset, a collection of one million Computer-Aided Design (CAD) models for research of geometric deep learning methods and applications. Each model is a collection of explicitly parametrized curves and surfaces, providing ground truth for differential quantities, patch segmentation, geometric feature detection, and shape reconstruction. Sampling the parametric descriptions of surfaces and curves allows generating data in different formats and resolutions, enabling fair comparisons for a wide range of geometric learning algorithms. As a use case for our dataset, we perform a large-scale benchmark for estimation of surface normals, comparing existing data driven methods and evaluating their performance against both the ground truth and traditional normal estimation methods.
Bijective maps are commonly used in many computer graphics and scientific computing applications, including texture, displacement, and bump mapping. However, their computation is numerically challenging due to the global nature of the problem, which makes standard smooth optimization techniques prohibitively expensive. We propose to use a scaffold structure to reduce this challenging and global problem to a local injectivity condition. This construction allows us to benefit from the recent advancements in locally injective maps optimization to efficiently compute large scale bijective maps (both in 2D and 3D), sidestepping the need to explicitly detect and avoid collisions. Our algorithm is guaranteed to robustly compute a globally bijective map, both in 2D and 3D. To demonstrate the practical applicability, we use it to compute globally bijective single patch parametrizations, to pack multiple charts into a single UV domain, to remove self-intersections from existing models, and to deform 3D objects while preventing self-intersections. Our approach is simple to implement, efficient (two orders of magnitude faster than competing methods), and robust, as we demonstrate in a stress test on a parametrization dataset with over a hundred meshes.
We study data-driven representations for three-dimensional triangle meshes, which are one of the prevalent objects used to represent 3D geometry. Recent works have developed models that exploit the intrinsic geometry of manifolds and graphs, namely the Graph Neural Networks (GNNs) and its spectral variants, which learn from the local metric tensor via the Laplacian operator.Despite offering excellent sample complexity and built-in invariances, intrinsic geometry alone is invariant to isometric deformations, making it unsuitable for many applications. To overcome this limitation, we propose several upgrades to GNNs to leverage extrinsic differential geometry properties of three-dimensional surfaces, increasing its modeling power. In particular, we propose to exploit the Dirac operator, whose spectrum detects principal curvature directions -this is in stark contrast with the classical Laplace operator, which directly measures mean curvature. We coin the resulting models Surface Networks (SN).We prove that these models define shape representations that are stable to deformation and to discretization, and we demonstrate the efficiency and versatility of SNs on two challenging tasks: temporal prediction of mesh deformations under non-linear dynamics and generative models using a variational autoencoder framework with encoders/decoders given by SNs.A particularly simple and popular extrinsic method [36,37] represents shapes as point clouds in R 3 of variable size, and leverages recent deep learning models that operate on input sets [44,43]. Despite its advantages in terms of ease of data acquisition (they no longer require a mesh triangulation) and good empirical performance on shape classification and segmentation tasks, one may wonder whether this simplification comes at a loss of precision as one considers more challenging prediction tasks.In this paper, we develop an alternative pipeline that applies neural networks directly on triangle meshes, building on geometric deep learning. These models provide data-driven intrinsic graph and manifold representations with inductive biases analogous to CNNs on natural images. Models based on Graph Neural Networks [40] and their spectral variants [6,11,26] have been successfully applied to geometry processing tasks such as shape correspondence [32]. In their basic form, these models learn a deep representation over the discretized surface by combining a latent representation at a given node with a local linear combination of its neighbors' latent representations, and a point-wise nonlinearity. Different models vary in their choice of linear operator and point-wise nonlinearity, which notably includes the graph Laplacian, leading to spectral interpretations of those models.Our contributions are three-fold. First, we extend the model to support extrinsic features. More specifically, we exploit the fact that surfaces in R 3 admit a first-order differential operator, the Dirac operator, that is stable to discretization, provides a direct generalization of Laplacian-based propagati...
Tutte embedding is one of the most common building blocks in geometry processing algorithms due to its simplicity and provable guarantees. Although provably correct in infinite precision arithmetic, it fails in challenging cases when implemented using floating point arithmetic, largely due to the induced exponential area changes. We propose Progressive Embedding, with similar theoretical guarantees to Tutte embedding, but more resilient to the rounding error of floating point arithmetic. Inspired by progressive meshes, we collapse edges on an invalid embedding to a valid, simplified mesh, then insert points back while maintaining validity. We demonstrate the robustness of our method by computing embeddings for a large collection of disk topology meshes. By combining our robust embedding with a variant of the matchmaker algorithm, we propose a general algorithm for the problem of mapping multiply connected domains with arbitrary hard constraints to the plane, with applications in texture mapping and remeshing. CCS Concepts: • Computing methodologies → Shape modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.