Submarine pipeline is a key part in the development of deep sea and ultra-deep sea oil and gas. In order to reduce the ovality of pipes and improve their compressive strength, a two-roller continuous calibration (TRCC) process by compression is proposed. A springback analysis of compress bending is carried out, and an analytical model is established, which predicts ovality after calibration and provides a theoretical basis for roller shape design and process parameter formulation. Numerical simulation and physical experiments are carried out. The distribution of stress and strain is analyzed. The effects of initial ovality, reduction ratio and initial placement angle on the ovality after calibration are studied. When the reduction ratio is about 1%, the ovality is optimal. The theoretical analysis shows that the ovality after calibration is about 0.03%, and the ovality after calibration by numerical simulation and experiment is less than 0.45%, proving the feasibility of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.