Two-dimensional (2D) nanocrystals have attracted tremendous attention from many researchers in various disciplines because of their unique properties.[1] Since ways of making graphene were devised, [2] there have been significant research efforts to synthesize free-standing 2D nanocrystals of various materials, including metals, [3] oxides, [4] and chalcogenides.[5]Many of these 2D nanocrystals have been generated from exfoliation of materials with layered structures, and tiny amounts of products are generally produced.[6] CdSe nanocrystals are among the most intensively studied nanostructured materials, [7] owing to their many size-dependent optical and electrical characteristics [8] and resulting exciting applications.[9] Herein, we report on the large-scale synthesis of single-layered and lamellar-structured 2D CdSe nanocrystals with wurtzite crystal structure as thin as 1.4 nm by a soft colloidal template method. These free-standing 2D nanocrystals with insulating organic layers at the interface could find many interesting electronic and optoelectronic applications, including in quantum cascade lasers and resonant tunneling diodes utilizing their multiple quantum well structures. [10] Compared to materials with layered crystal structures such as graphite, the synthesis of free-standing 2D nanocrystals of nonlayered materials such as CdSe is extremely challenging, because selective growth along one specific facet among several with similar energies is required. For example, in CdSe with a hexagonal wurtzite crystal structure, a (0001 ) facet has significantly higher surface energy than other facets, which leads to the formation of many one-dimensional nanostructures.[11] Although there is a slight difference in the surface energies of AE (112 0) and AE (11 00) facets, [12] quantum-confined thin CdSe 2D nanocrystals could not be synthesized using a conventional colloidal chemical route that employs thermal decomposition of precursors at high temperature, because the small difference in the surface energies of these two facets is negated by the high reaction temperature. Consequently, there have been only a few reports on the successful chemical synthesis of 2D CdSe nanocrystals.[13] For example, CdSe inorganic-organic hybrid lamellar structures [13b,c] and CdSe nanoplatelets [13d] with zinc-blende structure were synthesized using colloidal chemical routes. However, their 2D growth mechanism has not been clearly elucidated. Furthermore, nanostructural control to form single-layered or multiple-layered nanosheets has not been demonstrated. In the current approach to creating 2D CdSe nanocrystals, we employed a soft template method, [14] and we were able to synthesize not only free-standing single-layered CdSe nanosheets but also lamellar-structured nanosheets by controlling the interaction between organic layers in 2D templates of cadmium chloride alkyl amine complexes. [15] It has been reported that the complex of cadmium halide and diamine can form a cadmium halide / diamine alternating layered structure thr...
Colloidal superparticles are nanoparticle assemblies in the form of colloidal particles. The assembly of nanoscopic objects into mesoscopic or macroscopic complex architectures allows bottom-up fabrication of functional materials. We report that the self-assembly of cadmium selenide-cadmium sulfide (CdSe-CdS) core-shell semiconductor nanorods, mediated by shape and structural anisotropy, produces mesoscopic colloidal superparticles having multiple well-defined supercrystalline domains. Moreover, functionality-based anisotropic interactions between these CdSe-CdS nanorods can be kinetically introduced during the self-assembly and, in turn, yield single-domain, needle-like superparticles with parallel alignment of constituent nanorods. Unidirectional patterning of these mesoscopic needle-like superparticles gives rise to the lateral alignment of CdSe-CdS nanorods into macroscopic, uniform, freestanding polymer films that exhibit strong photoluminescence with a striking anisotropy, enabling their use as downconversion phosphors to create polarized light-emitting diodes.
Magneto-fluorescent particles have been recognized as an emerging class of materials that exhibit great potential in advanced applications. However, synthesizing such magnetofluorescent nanomaterials that simultaneously exhibit uniform and tunable sizes, high magnetic content loading, maximized fluorophore coverage at the surface and a versatile surface functionality has proven challenging. Here we report a simple approach for co-assembling magnetic nanoparticles with fluorescent quantum dots to form colloidal magneto-fluorescent supernanoparticles. Importantly, these supernanoparticles exhibit a superstructure consisting of a close-packed magnetic nanoparticle 'core', which is fully surrounded by a 'shell' of fluorescent quantum dots. A thin layer of silica coating provides high colloidal stability and biocompatibility, and a versatile surface functionality. We demonstrate that after surface pegylation, these silica-coated magneto-fluorescent supernanoparticles can be magnetically manipulated inside living cells while being optically tracked. Moreover, our silica-coated magneto-fluorescent supernanoparticles can also serve as an in vivo multi-photon and magnetic resonance dual-modal imaging probe.
Lead halide perovskites are promising materials for a range of applications owing to their unique crystal structure and optoelectronic properties. Understanding the relationship between the atomic/mesostructures and the associated properties of perovskite materials is crucial to their application performances. Herein, the detailed pressure processing of CsPbBr perovskite nanocube superlattices (NC-SLs) is reported for the first time. By using in situ synchrotron-based small/wide angle X-ray scattering and photoluminescence (PL) probes, the NC-SL structural transformations are correlated at both atomic and mesoscale levels with the band-gap evolution through a pressure cycle of 0 ↔ 17.5 GPa. After the pressurization, the individual CsPbBr NCs fuse into 2D nanoplatelets (NPLs) with a uniform thickness. The pressure-synthesized perovskite NPLs exhibit a single cubic crystal structure, a 1.6-fold enhanced photoluminescence quantum yield, and a longer emission lifetime than the starting NCs. This study demonstrates that pressure processing can serve as a novel approach for the rapid conversion of lead halide perovskites into structures with enhanced properties.
Nanometre-sized inorganic dots, wires and belts have a wide range of electrical and optical properties, and variable mechanical stability and phase-transition mechanisms that show a sensitive dependency on size, shape and structure. The optical properties of the semiconductor ZnS in wurtzite structures are considerably enhanced, but the lack of structural stability limits technological applications. Here, we demonstrate that morphology-tuned wurtzite ZnS nanobelts show a particular low-energy surface structure dominated by the +/-[210] surface facets. Experiments and calculations show that the morphology of ZnS nanobelts leads to a very high mechanical stability to approximately 6.8 GPa, and also results in an explosive mechanism for the wurtzite-to-sphalerite phase transformation together with in situ fracture of the nanobelts. ZnS wurtzite nanobelts provide a model that is useful not only for understanding the morphology-tuned stability and transformation mechanism, but also for improving synthesis of metastable nanobelts with quantum effects for electronic and optical devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.