MnZn ferrite homogeneous fibers were synthesized via a simple solvothermal method and they were used as a reinforcing phase to prepare homogeneous-fiber-reinforced MnZn ferrite materials. The effects of MnZn ferrite homogeneous fibers (0 wt% to 4 wt%) doping on the microstructure, magnetic, and mechanical properties of MnZn ferrite materials were studied systematically. The results showed that MnZn ferrite homogeneous fibers exhibited high purity, good crystallinity, and smooth 1D fibrous structures, which were homogeneous with MnZn ferrite materials. Simultaneously, a certain content of MnZn ferrite homogeneous fibers helped MnZn ferrite materials exhibit more uniform and compact crystal structures, less porosity, and fewer grain boundaries. In addition, the homogeneous-fiber-reinforced MnZn ferrite materials possessed superior magnetic and mechanical properties such as higher effective permeability, lower magnetic loss, and higher Vickers hardness compared to ordinary MnZn ferrite materials. In addition, the magnetic and mechanical properties of homogeneous-fiber-reinforced MnZn ferrite materials first increased and then gradually decreased as the homogeneous fiber content increased from 0 wt% to 4 wt%. The best magnetic and mechanical properties of materials were obtained as the fiber content was about 2 wt%.
We report a novel method of synthesizing multiferroic BiFeO3/Pb(Zr0.52Ti0.48)O3 (BFO/PZT) bilayer films based on the use of a high magnetic field. Simultaneously enhanced magnetization and electric polarization were observed at room temperature in the films annealed under an external magnetic field. Compared with the control samples annealed at zero field, the saturated magnetization and double remanent polarization were increased by a factor of 6 at room temperature. These results demonstrate that the strong magnetic annealing method is an alternative way to fabricate high-performance BiFeO3 films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.