This paper reviews the advances in the state-of-the-art colloidal self-assembly methods to fabricate colloidal photonic crystals and their emerging applications.
We review recent progress in the development of two-dimensional (2-D) photonic crystal (PC) materials for chemical and biological sensing applications. Self-assembly methods were developed in our laboratory to fabricate 2-D particle array monolayers on mercury and water surfaces. These hexagonal arrays strongly forward Bragg diffract light to report on their array spacings. By embedding these 2-D arrays onto responsive hydrogel surfaces, 2-D PC sensing materials can be fabricated. The 2-D PC sensors utilize responsive polymer hydrogels that are chemically functionalized to show volume phase transitions in selective response to particular chemical species. Novel hydrogels were also developed in our laboratory by cross-linking proteins while preserving their native structures to maintain their selective binding affinities. The volume phase transitions swell or shrink the hydrogels, which alter their 2-D array spacings, and shift their diffraction wavelengths. These shifts can be visually detected or spectrally measured. These 2-D PC sensing materials have been used for the detection of many analytes, such as pH, surfactants, metal ions, proteins, anionic drugs, and ammonia. We are exploring the use of organogels that use low vapor pressure ionic liquids as their mobile phases for sensing atmospheric analytes.
Botanical systems have evolved the intriguing ability to respond to diverse stimuli due to long‐term survival competition. Mimicking these dynamic behaviors has greatly advanced the developments in wide fields ranging from soft robotics, precision sensors to drug delivery and biomedical devices. However, realization of stimuli‐responsive components at the microscale with high response speed still remains a significant challenge. Herein, the miniature biomimetic 4D printing of pH‐responsive hydrogel is reported in spatiotemporal domain by femtosecond laser direct writing. The dimension of the printed architectures is at the microscale (<102 µm) and the response speed is reduced down to subsecond level (<500 ms). Shape transformation with multiple degrees of freedom is accomplished by taking advantage of pH‐triggered expansion, contraction, and torsion. Biomimetic complex shape‐morphing is enabled by adopting flexible scanning strategies. In addition, application of this 4D‐printed micro‐architecture in selective micro‐object trapping and releasing is demonstrated, showcasing its possibilities in micromanipulation, single‐cell analysis, and drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.