The composition characteristics and working principle of the hydraulic rotary system of the azimuth thruster were analyzed. The mathematical model of the rotary dynamic system of the pump-controlled hydraulic motor driving the gear reduction mechanism was established. Additionally, a fast tracking method for the azimuth angle of the azimuth thruster was proposed to analyze the rotary azimuth angle, angular velocity and dynamic response characteristics of the hydraulic system for different desired azimuth angles. The simulation results show that the established dynamic model can simulate the rotary motion response process of the real thruster, and can realize the rapid and accurate tracking of the azimuth angle. At the same time, the physical constraints of the rotary dynamic response were established. It provides an important reference for research on the motion control methods of dynamic positioning vessels.
A pipelaying control method is presented in this paper which includes path planning, path guidance, and path tracking controller for dynamically positioned (DP) surface vessels based on the characteristics of the predefined path in marine pipelaying operation. The pipelaying control method depends on path coding, path selection logic system, and a sliding matrix. The sliding matrix contains a vessel local path and its specified control requirements, which can be updated by sliding down the waypoint table line by line as the vessel is traveling from one path to the next. A line of sight (LOS) algorithm is developed to calculate the desired vessel position and heading on a circular arc path. The motion controller, which can simultaneously control the vessel speed at the directions of surge and sway, is designed by decomposing the desired inertial resulting velocity into the desired body velocity components. A DP simulator for pipelaying operation is developed, and in order to verify the proposed method, a pipelaying simulation is carried out. The simulation results show that the proposed method enables the vessel to move along the desired path while maintaining a set crab angle, a specified speed, and a turning radius. The pipeline can be laid onto the specified waypoints even when the vessel is subjected to drift forces caused by ocean currents, wind, and waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.