Fault detection (FD) and fault-tolerant cooperative control (FTCC) strategies are proposed in this paper for multiple fixed-wing unmanned aerial vehicles (UAVs) under actuator faults, sensor faults, and wind disturbances. Firstly, the faulty model is introduced while the effectiveness loss, deviation of thrust throttle setting, and pitot sensor faults are considered. Secondly, the faulty UAV model with wind disturbances is linearized and the system is then converted into two subsystems by using state and output transformations. Further, cooperative unknown input observers (UIOs) are developed to estimate the faults, disturbances, and states. By combining with the observers’ estimations, adaptive thresholds are designed to detect actuator and sensor faults in the system. Then, considering state constraints, a backstepping-based FTCC scheme is proposed for multiple UAVs (multi-UAVs) suffering from actuator faults, sensor faults, and wind disturbances. It is shown by Lyapunov analysis that the tracking errors are fixed-time convergent. Finally, the effectiveness of the FD and FTCC scheme is verified by numerical simulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.