In this paper a multiple criteria optimization method is used to achieve the optimum selection of cutting conditions and tool inserts for finish turning operations. The utility function which maps criterion vectors into the real line is constructed based on tool-life and material removal rate. This unified objective function serves as an arbiter balancing the values of the individual objective functions. Different formats of utility functions are developed and their physical significance is analyzed. Other major machining performance characteristics such as surface roughness, cutting force, power requirements and chip breakability are used as constraints to define acceptable limits on these criteria, along with the limits on the ranges of the process variables. A hybrid process model which uses combinations of the metal cutting theories and an expandable database of experimental results is used to describe the interrelationships between the machining performance criteria and the process variables. Nonlinear programming techniques coupled with numerical methods for data interpolation are then applied to identify optimum process conditions for a given tool insert. Furthermore, for any specified application a cutting tool can be selected through comparative analyses. A sample case for a typical tool insert was studied and the results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.