Improving our comprehension of the weight and spatial distribution of urban built environment stocks is essential for informing urban resource, waste, and environmental management, but this is often hampered by inaccuracy and inconsistency of the typology and material composition data of buildings and infrastructure. Here, we have integrated big data mining and analytics techniques and compiled a local material composition database to address these gaps, for a detailed characterization of the quantity, quality, and spatial distribution (in 500 m × 500 m grids) of the urban built environment stocks in Beijing in 2018. We found that 3621 megatons (140 ton/cap) of construction materials were accumulated in Beijing's buildings and infrastructure, equaling to 1141 Mt of embodied greenhouse gas emissions. Buildings contribute the most (63% of total, roughly half in residential and half in nonresidential) to the total stock and the subsurface stocks account for almost half. Spatially, the belts between 3 and 7 km from city center (approximately 5 t/m 2 ) and commercial grids (approximately 8 t/m 2 ) became the densest. Correlation analyses between material stocks and socioeconomic factors at a high resolution reveal an inverse relationship between building and road stock densities and suggest that Beijing is sacrificing skylines for space in urban expansion. Our results demonstrate that harnessing emerging big data and analytics (e.g., point of interest data and web crawling) could help realize more spatially refined characterization of built environment stocks and highlight the role of such information and urban planning in urban resource, waste, and environmental strategies.
Abstract:In the big data era, the social media data that contain users' geographical locations are growing explosively. These kinds of spatiotemporal data provide a new perspective for us to observe the human movement behavior. By mining such spatiotemporal data, we can incorporate the users' collective wisdom, build novel services and bring convenience to people. Through spatial clustering of the original user locations, both the 'natural' boundaries and the human activity information of the tourist attractions are generated, which facilitate performing popularity analysis of tourist attractions and extracting the travelers' spatio-temporal patterns or travel laws. On the one hand, the potential extracted knowledge could provide decision supports to the tourism management department in both tourism planning and resource development; on the other hand, the travel preferences are able to be extracted from the clustering-generated attractions, and thus, intelligent tourism recommendation services could be developed for the tourist to promote the realization of 'smart tourism'. Hence, this paper proposes a new method for discovering popular tourist attractions, which extracts hotspots through integrating spatial clustering and text mining approaches. We carry out tourist attraction discovery experiments based on the Flickr geotagged images within the urban area of Beijing from 2005 to 2016. The results show that compared with the traditional DBSCAN method, this novel approach can distinguish adjacent high-density areas when discovering popular tourist attractions and has better adaptability in the case of an uneven density distribution. In addition, based on the finding results of scenic hotspots, this paper analyzes the popularity distribution laws of Beijing's tourist attractions under different temporal and weather contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.