Methicillin-resistant Staphylococcus aureus (MRSA) and its biofilms infection is still a serious threat to global health. It is urgent to develop efficient drugs by repositioning or designing drugs to solve this problem. In this study, the antibacterial/biofilm activity and mechanisms of ivermectin (D) and its 4′′-position amino substitution derivative (D4) against MRSA were investigated. The minimum inhibitory concentration (MIC) of D was 20 μg/mL, which is four times higher than D4 (MIC = 5 μg/mL). The mechanism research demonstrated that D4 was more potent than D at destroying bacterial cell wall, permeating cell membrane (6.25–36.0% vs 1.92–6.04%) and binding to MRSA genomic DNA. Moreover, after incubation with 10–40 μg/mL D4 for 24 h, the percentages of biofilm decreased by 21.2–92.9%, which was more effective than D (no significant change at 40 μg/mL). The antibiofilm effect is achieved by regulating the expression of related genes (RSH, relQ, rsbU, sigB, spA, and icaD). Additionally, though the higher hemolysis makes D4 a safety risk for intravenous injection, other administration options could be considered as well. Therefore, all the results have indicated that D4 may be a potential candidate compound for the treatment of MRSA and its biofilm infections.
Methicillin-resistant staphylococcus aureus (MRSA) and its biofilm infection were considered as one of the main international health issues. There are still many challenges for treatment using traditional antibiotics. In this study, a mutant peptide of innate defense regulator (IDR-)1018 named 1018M was designed based on molecular docking and amino acid substitution technology. The antibacterial/biofilm activity and mechanisms against MRSA of 1018M were investigated for the first time. The minimum inhibitory concentration (MIC) of 1018M was reduced 1 time (MIC = 2 μg/mL) compared to IDR-1018. After treatment with 32 μg/mL 1018M for 24 h, the percentage of biofilm decreased by 78.9%, which was more effective than the parental peptide. The results of mechanisms exploration showed that 1018M was more potent than IDR-1018 at destructing bacterial cell wall, permeating cell membrane (20.4%–50.1% vs 1.45%–10.6%) and binding to stringent response signaling molecule ppGpp (increased 27.9%). Additionally, the peptides could also exert their activity by disrupting genomic DNA, regulating the expression of ppGpp metabolism and biofilm forming related genes (RSH, relP, relQ, rsbU, sigB, spA, codY, agrA and icaD). Moreover, the higher temperature, pH and pepsase stabilities provide 1018M better processing, storage and internal environmental tolerance. These data indicated that 1018M may be a potential candidate peptide for the treatment of MRSA and its biofilm infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.