In this study, an analytical method was developed and validated for simultaneous determination of five diamide insecticides (chlorantraniliprole, cyantraniliprole, flubendiamide, cyclaniliprole, and tetrachlorantraniliprole) in food matrices. Determination of the latter two diamide compounds is first reported. Samples were cleaned up by multiplug filters containing carbon nanotubes (CNT) or hydrophilic−lipophilic balanced copolymers (HLB) and classic dispersive solid phase extraction (d-SPE) procedures, respectively. The CNT multiplug filter performed the best in terms of process rapidity and cleanup efficiency; thus, it was finally chosen for sample cleanup. Instrumental analysis was completed in 5 min using ultrahigh-performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS). Mean recoveries of the five diamides ranged from 84.3 to 110.0%, with intraday and interday relative standard deviations (RSD) of less than 13.5%. Limits of quantitation (LOQ) of all analytes ranged from 0.005 to 0.01 mg kg −1 in different matrices. The results indicate this method is reliable for monitoring the five diamide insecticides in various foods.
Gaseous methyl isothiocyanate (MITC), the principal breakdown product of the soil fumigant metam sodium (sodium N-methyldithiocarbamate), is an inhalation exposure concern to persons living near treated areas. Inhalation exposure also involves gaseous methyl isocyanate (MIC), a highly reactive and toxic transformation product of MITC. In this work, gas-phase hydroxyl (OH) radical reaction rate constants of MITC and MIC have been determined using a static relative rate technique under controlled laboratory conditions. The rate constants obtained are 15.36 × 10(-12) cm(3) molecule(-1) s(-1) for MITC and 3.62 × 10(-12) cm(3) molecule(-1) s(-1) for MIC. The average half-lives of MITC and MIC in the atmosphere are estimated to be 15.7 and 66.5 h, respectively. The molar conversion of MITC to MIC for OH radical reactions is 67% ± 8%, which indicates that MIC is the primary product of the MITC-OH reaction in the gas phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.