In the protecting inert gas, silver nanoparticles were successfully prepared by confined arc plasma method. The particle size, microstructure, and morphology of the particles by this process were characterized via X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and the corresponding selected area electron diffraction (SAED). TheN2absorption-desorption isotherms of the samples were measured by using the static volumetric absorption analyzer, the pore structure of the sample was calculated by Barrett-Joyner-Halenda (BJH) academic model, and the specific surface area was calculated from Brunauer-Emmett-Teller (BET) adsorption equation. The experiment results indicate that the crystal structure of the samples is face-centered cubic (FCC) structure the same as the bulk materials, the particle size distribution ranging from 5 to 65 nm, with an average particle size about 26 nm obtained by TEM and confirmed by XRD and BET results. The specific surface area is 23.81 m2/g, pore volumes are 0.09 cm3/g, and average pore diameter is 18.7 nm.
Loess foundations often affect the stability of superstructures due to their insufficient bearing capacities; thus, reinforcement measures are crucial for mitigating the uneven settlement of foundations. This study aims to investigate the settlement characteristics of composite foundations for loess foundations reinforced by splitting grouting piles. First, split grouting tests were carried out on loess foundations. After the test piles reached the design strength, static load tests and geotechnical tests were carried out to obtain the Q-s curves of the test piles. The pile-forming mechanism was analyzed via excavations at an on-site test pile. Furthermore, the traditional settlement calculation method of composite foundations was used to calculate the settlement of split grouting pile composite foundations, and the results were compared with field test results to explore a suitable settlement calculation method of split grouting pile composite foundations. Finally, the numerical model of split grouting pile composite foundations was established according to the pile forming mechanism, and the settlement deformation characteristics of single pile and pile group composite foundations were analyzed. The relative errors of the composite modulus method and the stress correction method for calculating the settlement of the composite foundations were 6.4% and 32.8%, respectively, and the composite modulus method was closer to the test values. The calculated curves of the numerical model were in good agreement with the measured curves and relevant literature research results, demonstrating the rationality of the modeling method; the findings of this study provide theoretical guidance for designing loess foundation splitting grouting reinforcement and for predicting settlement during later construction periods.
In order to realize the directional and controllable splitting of splitting grouting, the field grouting test was carried out. Using a new grouting pipe designed, the splitting direction and size of the branch vein are effectively controlled through the control of grouting pressure and grouting amount. In order to explore the bearing characteristics of split grouting pile and provide necessary parameters for the design of split grouting pile composite foundation in engineering practice, the field static load test and indoor geotechnical test of split grouting pile are designed, and the ultimate bearing capacity of single pile and necessary soil parameters are obtained. In order to make up for the limitations of field static load test, the three-dimensional finite element model of pile, soil and branch vein of split grouting pile is established by using the finite element analysis software ABAQUS. The finite element analysis results are compared with the measured values of field test, and the variation laws of pile shaft axial force, stress and displacement of branch vein at different depths, pile side friction, etc. are further explored, Through these changes, the interaction and load transfer mechanism between pile and soil are analyzed, which provides a reference for optimal design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.