The geomorphology of the deep-sea environment is complex, including seamounts based on hard rocks and seabeds based on rare soft sediments. Therefore, the frame of the benthic lander needs to be shock and subsidence resistant. In this paper, the static model of the benthic landers is established to analyze their force and deformation under different loads, and the dynamic model of the benthic landers is established to derive the motion equation of their landing on the sediment. Some typical frame structure of benthic landers is analyzed with the ANSYS Workbench static analysis module and Explicit Dynamics module. The sea trial data of the benthic lander prototype were analyzed to provide reference for the design and application of the lander’s framework. The research done in this paper provides the basis for the impact resistance design and bottom speed design of the benthic lander and proposes a simulation analysis method for the calculation of the bottom subsidence of the benthic lander.
The flow duration curve (FDC) is the cumulative distribution function, which represents the relationship between the frequency and magnitude of streamflow,and the precipitation duration curves (PDC) follows the same principle. Nowadays, the correlation between the shape of PDC and FDC curves, their respective physical control factors, and their fitting conditions in unmeasured catchments across China have not been fully understood. In this paper, daily precipitation from 698 weather stations across China and streamflow from more than 200 hydrological stations in the middle and lower Yangtze River basin were chosen to analyze the relationship, similarity, regional pattern and response mechanism of fitting parameters between PDC and FDCs. Framework was proposed for modeling FDC, decomposing the Streamflow time series into fast flow and slow flow time series and attributing the shapes of PDC and FDCs to catchment meteorological and geographical characteristics and physical processes. Results indicate that the parameters of PDC and certain FDCs (TFDC, FFDC, SFDC) share similar spatial patterns but the value of parameters and shape of curves varies for the different duration and interactions of the processes. The climate and catchment characteristics such as extreme properties of precipitation, base flow index ( BFI), Pmax*αp and concentration ratio index based on monthly precipitation ( CIM) will influence the shape of normalized PDC and FDCs, which provides a way to predict unmeasured catchments for PDC and FDCs, diagnose catchment rainfall-runoff responses, including similarity and differences between catchments, and can be applied to more future research about processes based on physical controls.
Background: Molecular etiology of lingual hamartoma is poorly understood. This study aims to identify potentially deleterious mutations for lingual hamartoma and analyze its molecular profile by a combination of whole-exome sequencing and RNAsequencing.Methods: Whole-exome sequencing was conducted on the proband presenting lingual hamartoma and patient's unaffected family members. Potentially pathogenic mutations were identified after filtration. The pathogenicity of the identified variants was predicted by in silico algorithms and conservative analysis. RNA-sequencing was performed to further explore the molecular profile of lingual hamartoma.Results: Whole-exome sequencing of the proband and patients' unaffected brother and parents identified a de novo mutation c.931C>T_p.Pro311Ser in the DYNC2H1 gene (NM_001080463.2). The DYNC2H1 mutation was predicted to be diseasecausing for affecting highly conserved amino acid by PolyPhen2 and Mutation Taster.RNA-sequencing analysis showed that the DYNC2H1 gene was significantly downregulated in lingual hamartoma. Gene set enrichment analysis revealed cilium assembly and Hedgehog signaling pathway were significantly affected. Conclusion:The study expanded our knowledge on the clinical and genetic spectrum of lingual hamartoma by identifying causal variants in a Chinese pedigree. DYNC2H1 is likely to participate in tongue development and its pathologic mutation may underlie the etiology of lingual hamartoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.