Autonomous vehicles rely on LiDAR sensors to detect obstacles such as pedestrians, other vehicles, and fixed infrastructures. LiDAR spoofing attacks have been demonstrated that either create erroneous obstacles or prevent detection of real obstacles, resulting in unsafe driving behaviors. In this paper, we propose an approach to detect and mitigate LiDAR spoofing attacks by leveraging LiDAR scan data from other neighboring vehicles. This approach exploits the fact that spoofing attacks can typically only be mounted on one vehicle at a time, and introduce additional points into the victim's scan that can be readily detected by comparison from other, non-modified scans. We develop a Fault Detection, Identification, and Isolation procedure that identifies non-existing obstacle, physical removal, and adversarial object attacks, while also estimating the actual locations of obstacles. We propose a control algorithm that guarantees that these estimated object locations are avoided. We validate our framework using a CARLA simulation study, in which we verify that our FDII algorithm correctly detects each attack pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.