In order to explore the application of hyperspectral technology in the pathological diagnosis of tumor tissue, we used microscopic hyperspectral imaging technology to establish a hyperspectral database of 30 patients with gastric cancer. Based on the difference in spectralspatial features between gastric cancer tissue and normal tissue in the wavelength of 410-910 nm, we propose a deep-learning model-based analysis method for gastric cancer tissue. The microscopic hyperspectral feature and individual difference of gastric tissue, spatial-spectral joint feature and medical contact are studied. The experimental results show that the classification accuracy of proposed model for cancerous and normal gastric tissue is 97.57%, the sensitivity and specificity of gastric cancer tissue are 97.19% and 97.96% respectively. Compared with the shallow learning method, CNN can fully extract the deep spectral-spatial features of tumor tissue. The combination of deep learning model and micro-spectral analysis provides new ideas for the research of medical pathology.
Unmanned aerial vehicle (UAV) hyperspectral remote sensing technologies have unique advantages in high-precision quantitative analysis of non-contact water surface source concentration. Improving the accuracy of non-point source detection is a difficult engineering problem. To facilitate water surface remote sensing, imaging, and spectral analysis activities, a UAV-based hyperspectral imaging remote sensing system was designed. Its prototype was built, and laboratory calibration and a joint air–ground water quality monitoring activity were performed. The hyperspectral imaging remote sensing system of UAV comprised a light and small UAV platform, spectral scanning hyperspectral imager, and data acquisition and control unit. The spectral principle of the hyperspectral imager is based on the new high-performance acousto-optic tunable (AOTF) technology. During laboratory calibration, the spectral calibration of the imaging spectrometer and image preprocessing in data acquisition were completed. In the UAV air–ground joint experiment, combined with the typical water bodies of the Yangtze River mainstream, the Three Gorges demonstration area, and the Poyang Lake demonstration area, the hyperspectral data cubes of the corresponding water areas were obtained, and geometric registration was completed. Thus, a large field-of-view mosaic and water radiation calibration were realized. A chlorophyl-a (Chl-a) sensor was used to test the actual water control points, and 11 traditional Chl-a sensitive spectrum selection algorithms were analyzed and compared. A random forest algorithm was used to establish a prediction model of water surface spectral reflectance and water quality parameter concentration. Compared with the back propagation neural network, partial least squares, and PSO-LSSVM algorithms, the accuracy of the RF algorithm in predicting Chl-a was significantly improved. The determination coefficient of the training samples was 0.84; root mean square error, 3.19 μg/L; and mean absolute percentage error, 5.46%. The established Chl-a inversion model was applied to UAV hyperspectral remote sensing images. The predicted Chl-a distribution agreed with the field observation results, indicating that the UAV-borne hyperspectral remote sensing water quality monitoring system based on AOTF is a promising remote sensing imaging spectral analysis tool for water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.