Background
The prevalence of metabolic syndrome (Mets) is closely related to an increased incidence of cardiovascular events. Angiopoietin-like protein 4 (ANGPTL4) is contributory to the regulation of lipid metabolism, herein, may provide a target for gene-aimed therapy of Mets. This observational case control study was designed to elucidate the relationship between ANGPTL4 gene single nucleotide polymorphism (SNP) rs1044250 and the onset of Mets, and to explore the interaction between SNP rs1044250 and weight management on Mets.
Methods
We have recruited 1018 Mets cases and 1029 controls in this study. The SNP rs1044250 was genotyped with blood samples, base-line information and Mets-related indicators were collected. A 5-year follow-up survey was carried out to track the lifestyle interventions and changes in Mets-related indicators.
Results
ANGPTL4 gene SNP rs1044250 is an independent risk factor for increased waist circumference (OR 1.618, 95% CI [1.119–2.340]; p = 0.011), elevated blood pressure (OR 1.323, 95% CI [1.002–1.747]; p = 0.048), and Mets (OR 1.875, 95% CI [1.363–2.580]; p < 0.001). The follow-up survey shows that rs1044250 CC genotype patients with weight gain have an increased number of Mets components (M [Q1, Q3]: CC 1 (0, 1), CT + TT 0 [− 1, 1]; p = 0.021); The interaction between SNP rs1044250 and weight management is a risk factor for increased systolic blood pressure (β = 0.075, p < 0.001) and increased diastolic blood pressure (β = 0.097, p < 0.001), the synergistic effect of weight management and SNP rs1044250 is negative (S < 1).
Conclusion
ANGPTL4 gene SNP rs1044250 is an independent risk factor for increased waist circumference and elevated blood pressure, therefore, for Mets. However, patients with wild type SNP 1044250 are more likely to have Mets when the body weight is increased, mainly due to elevated blood pressure.
Co-secretion with insulin, highly amyloidogenic human amylin is considered to contribute to the initiation and progression of diabetic heart complications, despite other situations such as hypertension and atherosclerosis. In response to insulin resistance, hyperinsulinemia, and consequently hyperamylinemia, is common in prediabetic patients, where highly concentrated amylin is prone to form amylin oligomers, which further assemble into fibrils and amyloids with high β-sheet content. The infusion and deposition of oligomeric amylin in myocytes cause a series of consequences, including cytosolic Ca2+ dysregulation, calmodulin activation, myocyte hypertrophy, and ventricular stiffness, eventually leading to heart failure. In this review, we present the latest reports of amylin-related heart complications, provide new insights, and state the underlying pathogenesis, diagnosis, possible treatment, and prevention of diabetic cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.