Micro/nano serpentine structures have widespread applications in flexible/stretchable electronics; however, challenges still exist for low-cost, high-efficiency and controllable manufacturing. Helix electrohydrodynamic printing (HE-printing) has been proposed here to realize controllable direct-writing of large area, highly aligned serpentine micro/nanofibers by introducing the rope coiling effect into printing process. By manipulating the flying trajectory and solidification degree of the micro/nano jet, the solidified micro/nanofiber flying in a stabilized helical manner and versatile serpentine structures deposited on a moving collector have been achieved. Systematic experiments and theoretical analysis were conducted to study the transformation behavior and the size changing rules for various deposited microstructures, and highly aligned serpentine microfibers were directly written by controlling the applied voltage, nozzle-to-collector distance and collector velocity. Furthermore, a hyper-stretchable piezoelectric device that can detect stretching, bending and pressure has been successfully fabricated using the printed serpentine micro/nanofibers, demonstrating the potential of HE-printing in stretchable electronics manufacturing.
Stretchable nanogenerators that directly generate electricity are promising for a wide range of applications in wearable electronics. However, the stretchability of the devices has been a long-standing challenge. Here we present a newly-designed ultra-stretchable nanogenerator based on fractal-inspired piezoelectric nanofibers and liquid metal electrodes that can withstand strain as large as 200%. The large-scale fractal poly(vinylidene fluoride) (PVDF) micro/nanofibers are fabricated by combination of helix electrohydrodynamic printing (HE-Printing) and buckling-driven self-assembly. HE-Printing exploits "whipping/buckling" instability of electrospinning to deposit serpentine fibers with diverse geometries in a programmable, accurately positioned, and individually-controlled manner. Self-organized buckling utilizes the driven force from the prestrained elastomer to assemble serpentine fibers into ultra-stretchable fractal inspired architecture. The nanogenerator with embedded fractal PVDF fibers and liquid-metal microelectrodes demonstrates high stretchability (>200%) and electricity (currents >200 nA), it can harvest energy from all directions by arbitrary mechanical motion, and the rectified output has been applied to charge the commercial capacitor and drive LEDs, which enables wearable electronics applications in sensing and energy harvesting.
The transferring of thin chip from donor to receptor plays a critical role in advanced electronic package, and the productivity is determined by the interfacial behavior between chip and substrate during chip transferring. The paper investigates analytical competing fracture model of chip–adhesive–substrate structure in thin-chip transferring (peeling-off and placing-on), to discover the critical process condition for distinguishing the interfacial delamination and chip crack. The structure is continuously subjected to ejecting needle, vacuum pick-up head, and wafer fixture, which leads to concentrated and distributed loads and dynamic boundary conditions. Additionally, two criterions based on competing fracture model are presented to determine the extreme chip dimension for peeling-off and the elimination of residual stress for placing-on. The theoretical results are validated by the finite-element simulation with virtual crack-closure technique (VCCT). This paper provides an insight for process optimization, to improve the success ratio and productivity of chip transferring.
Direct ink writing (DIW) holds enormous potential in fabricating multiscale and multi-functional architectures by virtue of its wide range of printable materials, simple operation, and ease of rapid prototyping. Although it is well known that ink rheology and processing parameters directly affect the resolution and morphology of the printed objects, the underlying mechanisms of these key factors on the printability and quality of DIW technique remain poorly understood. To tackle this issue, we systematically analyzed the printability and quality through extrusion mechanism modelling and experimental validating. Hybrid non-Newtonian fluid inks were first prepared, and their rheological properties were measured. Then, finite element analysis of the whole DIW process was conducted to reveal the flow dynamics of these inks. The obtained optimal process parameters (ink rheology, applied pressure, printing speed, etc.) were also validated by experiments where high-resolution (< 100 μm) patterns were fabricated rapidly (> 70 mm/s). Finally, as a proof of concept, we printed a series of microstructures and circuit systems with hybrid inks and silver inks, showing the suitability of the printable process parameters. This study offers powerful quantitative guidelines for the usage of DIW in fabricating high-resolution, multi-component, and complex geometries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.