As the preference of design maker (DM) is always ambiguous, we have to face many multiple criteria decision-making (MCDM) problems with interval numbers in our daily life. Though there have been some methods applied to solve this sort of problem, it is always complex to comprehend and sometimes difficult to implement. The calculation processes are always ineffective when a new alternative is added or removed. In view of the weakness like this, this paper presents a new method based on TOPSIS and response surface method (RSM) for MCDM problems with interval numbers, RSM-TOPSIS-IN for short. The key point of this approach is the application of deviation degree matrix, which ensures that the DM can get a simple response surface (RS) model to rank the alternatives. In order to demonstrate the feasibility and effectiveness of the proposed method, three illustrative MCMD problems with interval numbers are analysed, including (a) selection of investment program, (b) selection of a right partner, and (c) assessment of road transport technologies. The contrast of ranking results shows that the RSM-TOPSIS-IN method is in good agreement with those derived by earlier researchers, indicating it is suitable to solve MCDM problems with interval numbers.
This paper presents a novel biologically inspired metaheuristic algorithm called seven-spot ladybird optimization (SLO). The SLO is inspired by recent discoveries on the foraging behavior of a seven-spot ladybird. In this paper, the performance of the SLO is compared with that of the genetic algorithm, particle swarm optimization, and artificial bee colony algorithms by using five numerical benchmark functions with multimodality. The results show that SLO has the ability to find the best solution with a comparatively small population size and is suitable for solving optimization problems with lower dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.