Background
In pregnant women with advanced maternal age (AMA) and fetuses with ultrasonographic (USG) soft markers it is always challenging to decide whether to implement chromosomal microarray analysis (CMA) or not. It is unclear whether CMA should be used in the fetuses with isolated USG soft markers, and there is still a lack of extensive sample research.
Material/Methods
We enrolled 1521 cases in our research and divided them into 3 groups as follows: pregnant women with isolated AMA (group 1, n=633), pregnant women whose fetuses had isolated USG soft markers (group 2, n=750), and pregnant women with AMA whose fetuses had isolated USG soft markers (group 3, n=138). All pregnant women underwent prenatal ultrasound and amniocentesis, and fetal cells in the amniotic fluid were used for genetic analysis of CMA. All participants signed a written informed consent prior to CMA.
Results
Abnormal findings were detected by CMA in 330 (21.70%) fetuses, including 37 (2.43%) clinically significant copy number variations (CNVs), 52 (3.42%) benign or likely benign CNVs, and 240 (15.78%) variants of unknown significance. The frequency of clinically significant CNVs in group 1 and group 2 were significantly lower than that in group 3 (2.37% and 2.0% vs 5.07%,
P
<0.01). More than a half (59.46%, 22/37) of the pregnant women decided to continue their pregnancy despite having a fetus diagnosed with clinically significant CNV.
Conclusions
CMA can increase the diagnostic yield of fetal chromosomal abnormality for pregnant women with isolated AMA or/and their fetuses had isolated USG soft markers.
Background
Terminal duplication on chromosome 15q is a rare chromosomal variation. Affected individuals show similar features such as growth dysplasia or the development of frontal bossing, body deformities, facial abnormalities, and genitourinary or cardiovascular disorders. However, it is not yet clear whether such 15q repeats lead to identifiable patterns of clinical abnormalities. Therefore, the purpose of this study was to analyze the prenatal diagnostic results and clinical manifestations of a fetus with 15q duplication and to summarize the literature.
Methods
The case was a fetus at 28 weeks of gestation. The risk of Down syndrome from second‐trimester screening was 1/140. Prenatal ultrasound and amniocentesis were performed, and chromosomal microarray analysis (CMA) was used for genetic analysis.
Results
The fetus had abnormal clinical features, including intracardiac echogenic focus in the left ventricle, an aberrant right subclavian artery, and growth delay. The fetal chromosomal karyotype was 46,XX,15q?,12q?,21pstk+, and CMA revealed a 10.163 Mb duplication at 15q24.3‐q25.3. The couple chose to terminate the pregnancy after careful consideration.
Conclusions
The combination and rational application of cytogenetics technology and molecular genetics technology such as CMA will open up the field of clinical application and provide useful genetic counseling for parents of fetuses carrying such chromosomal duplications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.