Concentrated livestock feeding operations have become a source of odorous gas emissions that impact air quality. Comprehensive and practical technologies are needed for a sustainable mitigation of the emissions. In this study, we advance the concept of using a catalyst for barn walls and ceilings for odor mitigation. Two catalysts, a new TiO 2 -based catalyst, PureTi Clean, and a conventional Evonik (formerly Degussa, Evonik Industries, Essen, Germany) P25 (average particle size 25 nm) catalyst, were studied for use in reducing simulated odorous volatile organic compound (VOC) emissions on a laboratory scale. The UV source was black light. Dimethyl disulfide (DMDS), diethyl disulfide (DEDS), dimethyl trisulfide (DMTS), butyric acid, p-cresol, and guaiacol were selected as model odorants. The effects of the environmental parameters, the presence of swine dust covering the catalyst, the catalyst type and layer density, and the treatment time were tested. The performance of the PureTi catalyst at 10 µg/cm 2 was comparable to that of P25 at 250 µg/cm 2 . The odorant reduction ranged from 100.0 ± 0.0% to 40.4 ± 24.8% at a treatment time of 200 s, simulating wintertime barn ventilation. At a treatment time of 40 s (simulating summertime barn ventilation), the reductions were lower (from 27.4 ± 8.3% to 62.2 ± 7.5%). The swine dust layer on the catalyst surface blocked 15.06 ± 5.30% of UV 365 and did not have a significant impact (p > 0.23) on the catalyst performance. Significant effects of relative humidity and temperature were observed.
Control of gaseous emissions from livestock operations is needed to ensure compliance with environmental regulations and sustainability of the industry. The focus of this research was to mitigate livestock odor emissions with UV light. Effects of the UV dose, wavelength, TiO2 catalyst, air temperature, and relative humidity were tested at lab scale on a synthetic mixture of nine odorous volatile organic compounds (VOCs) and real poultry manure offgas. Results show that it was feasible to control odorous VOCs with both photolysis and photocatalysis (synthetic VOCs mixture) and with photocatalysis (manure offgas). The treatment effectiveness R (defined as % conversion), was proportional to the light intensity for synthetic VOCs mixtures and followed an order of UV185+254 + TiO2 > UV254 + TiO2 > UV185+254; no catalyst > UV254; no catalyst. VOC conversion R > 80% was achieved when light energy was >~60 J L−1. The use of deep UV (UV185+254) improved the R, particularly when photolysis was the primary treatment. Odor removal up to ~80% was also observed for a synthetic VOCs mixture, and actual poultry manure offgas. Scale-up studies are warranted.
Aerial emissions of odorous volatile organic compounds (VOCs) are an important nuisance factor from livestock production systems. Reliable air sampling and analysis methods are needed to develop and test odor mitigation technologies. Quantification of VOCs responsible for livestock odor remains an analytical challenge due to physicochemical properties of VOCs and the requirement for low detection thresholds. A new air sampling and analysis method was developed for testing of odor/VOCs mitigation in simulated livestock emissions system. A flow-through standard gas generating system simulating odorous VOCs in livestock barn emissions was built on laboratory scale and tested to continuously generate ten odorous VOCs commonly defining livestock odor. Standard VOCs included sulfur VOCs (S-VOCs), volatile fatty acids (VFAs), and p-cresol. Solid-phase microextraction (SPME) was optimized for sampling of diluted odorous gas mixtures in the moving air followed by gas chromatography-mass spectrometry (GC-MS) analysis. CAR/PDMS 85μm fiber was shown to have the best sensitivity for the target odorous VOCs. A practical 5-min sampling time was selected to ensure optimal extraction of VFAs and p-cresol, as well as minimum displacement of S-VOCs. Method detection limits ranged from 0.39 to 2.64ppbv for S-VOCs, 0.23 to 0.77ppbv for VFAs, and 0.31ppbv for p-cresol. The method developed was applied to quantify VOCs and odorous VOC mitigation with UV light treatment. The measured concentrations ranged from 20.1 to 815ppbv for S-VOCs, 10.3 to 315ppbv for VFAs, and 4.73 to 417ppbv for p-cresol. Relative standard deviations between replicates ranged from 0.67% to 12.9%, 0.50% to 11.4%, 0.83% to 5.14% for S-VOCs, VFAs, and p-cresol, respectively. This research shows that a simple manual SPME sampler could be used successfully for quantification of important classes of odorous VOCs at concentrations relevant for real aerial emissions from livestock operations.
Commercial manufacture of fruit leathers (FL) usually results in a portion of the product that is out of specification. The disposition of this material poses special challenges in the food industry. Because the material remains edible and contains valuable ingredients (fruit pulp, sugars, acidulates, etc.), an ideal solution would be to recover this material for product rework. A key practical obstacle to such recovery is that compositing of differently colored wastes results in an unsalable gray product. Therefore, a safe and scalable method for decolorization of FL prior to product rework is needed. This research introduces a novel approach utilizing ozonation for color removal.To explore the use of ozonation as a decolorization step, we first applied it to simple solutions of the commonly used food colorants 2-naphthalenesulfonic acid (Red 40), tartrazine (Yellow 5), and erioglaucine (Blue 1). Decolorization was measured by UV/vis spectrometry at visible wavelengths and with a Hunter colorimeter. Volatile and semivolatile byproducts from ozone-based colorant decomposition were identified and quantified with solid phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Removal of Yellow 5, Red 40 and Blue 1 of about 65%, 80%, and 90%, respectively, was accomplished with 70 g of ozone applied per 1 kg of redissolved and resuspended FL. Carbonyl compounds were identified as major byproducts from ozone-induced decomposition of the food colorants. A conservative risk assessment based on quantification results and published toxicity information of potentially toxic byproducts, determined that ozone-based decolorization of FL before recycling is acceptable from a safety standpoint. A preliminary cost estimate based on recycling of 1000 tons of FL annually suggests a potential of $275,000 annual profit from this practice at one production facility alone. ABSTRACT: Commercial manufacture of fruit leathers (FL) usually results in a portion of the product that is out of specification. The disposition of this material poses special challenges in the food industry. Because the material remains edible and contains valuable ingredients (fruit pulp, sugars, acidulates, etc.), an ideal solution would be to recover this material for product rework. A key practical obstacle to such recovery is that compositing of differently colored wastes results in an unsalable gray product. Therefore, a safe and scalable method for decolorization of FL prior to product rework is needed. This research introduces a novel approach utilizing ozonation for color removal. To explore the use of ozonation as a decolorization step, we first applied it to simple solutions of the commonly used food colorants 2-naphthalenesulfonic acid (Red 40), tartrazine (Yellow 5), and erioglaucine (Blue 1). Decolorization was measured by UV/ vis spectrometry at visible wavelengths and with a Hunter colorimeter. Volatile and semivolatile byproducts from ozone-based colorant decomposition were identified and quantified with solid...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.