Organic fluorophores have been widely used for biological imaging in the visible and the first near-infrared windows. However, their application in the second near-infrared window (NIR-II, 1000-1700 nm) is still limited mainly due to low fluorescence quantum yields (QYs). Here, we explore molecular engineering on the donor unit to develop high performance NIR-II fluorophores. The fluorophores are constructed by a shielding unit-donor(s)-acceptor-donor(s)-shielding unit structure. Thiophene is introduced as the second donor connected to the shielding unit, which can increase the conjugation length and red-shift the fluorescence emission. Alkyl thiophene is employed as the first donor connected to the acceptor unit. The bulky and hydrophobic alkyl thiophene donor affords larger distortion of the conjugated backbone and fewer interactions with water molecules compared to other donor units studied before. The molecular fluorophore IR-FTAP with octyl thiophene as the first donor and thiophene as the second donor exhibits fluorescence emission peaked at 1048 nm with a QY of 5.3% in aqueous solutions, one of the highest for molecular NIR-II fluorophore reported so far. Superior temporal and spatial resolutions have been demonstrated with IR-FTAP fluorophore for NIR-II imaging of the blood vessels of a mouse hindlimb.
The significantly reduced tissue autofluorescence and scattering in the NIR-II region (1000-1700 nm) opens many exciting avenues for detailed investigation of biological processes in vivo. However, the existing NIR-II fluorescent agents, including many molecular dyes and inorganic nanomaterials, are primarily focused on complicated synthesis routes and unknown immunogenic responses with limited potential for clinical translation. Herein, the >1000 nm tail emission of conventional biocompatible NIR cyanine dyes with emission peaks at 700-900 nm is systematically investigated, and a type of bright dye for NIR-II imaging with high potential for accelerating clinical translation is identified. The asymmetry of the π domain in the S state of NIR cyanine dyes is proven to result in a twisted intramolecular charge-transfer process and NIR-II emission, establishing a general rule to guide future NIR-I/II fluorophore synthesis. The screened NIR dyes are identified to possess a bright emission tail in the NIR-II region along with high quantum yield, high molar-extinction coefficient, rapid fecal excretion, and functional groups amenable for bioconjugation. As a result, NIR cyanine dyes can be used for NIR-II imaging to afford superior contrast and real-time imaging of several biological models, facilitating the translation of NIR-II bioimaging to clinical theranostic applications.
NIR-II fluorescence imaging greatly reduces scattering coefficients for nearly all tissue types at long wavelengths, benefiting deep tissue imaging. However, most of the NIR-II fluorophores suffer from low quantum yields and/or short circulation time that limit the quality of NIR-II imaging. Here, we engineered a supramolecular assembly of protein complex with lodged cyanine dyes to produce a brilliant NIR-II fluorophore, providing a NIR-II quantum yield of 21.2% with prolonged circulation time. Computational modeling revealed the mechanism for fluorescence enhancement and identified key parameters governing albumin complex for NIR-II fluorophores. Our complex afforded high-resolution microvessel imaging, with a 3-hour imaging window compared to 2 min for free dye alone. Furthermore, the complexation strategy was applied to an antibody-derived assembly, offering high-contrast tumor imaging without affecting the targeting ability of the antibody. This study provides a facile strategy for producing high-performance NIR-II fluorophores by chaperoning cyanine dyes with functional proteins.
Thermally activated delayed fluorescence (TADF) relies on the presence of a very small energy gap, ΔE, between the lowest singlet and triplet excited states. ΔE is thus a key factor in the molecular design of more efficient materials. However, its accurate theoretical estimation remains challenging, especially in the solid state due to the influence of polarization effects. We have quantitatively studied ΔE as a function of dielectric constant, ε, for four representative organic molecules using the methodology we recently proposed at the Tamm-Dancoff approximation ωB97X level of theory, where the range-separation parameter ω is optimized with the polarizable continuum model. The results are found to be in very good agreement with experimental data. Importantly, the polarization effects can lead to a marked reduction in the ΔE value, which is favorable for TADF applications. This ΔE decrease in the solid state is related to the hybrid characters of the lowest singlet and triplet excited states, whose dominant contribution switches to charge-transfer-like with increasing ε. The present work provides a theoretical understanding on the influence of polarization effect on the singlet-triplet gap and confirms our methodology to be a reliable tool for the prediction and development of novel TADF materials.
During the past few decades, fabrication of functional rotaxane-branched dendrimers has become one of the most attractive yet challenging topics within supramolecular chemistry and materials science. Herein, we present the successful fabrication of a family of new rotaxane-branched dendrimers containing up to 21 platinum atoms and 42 photosensitizer moieties through an efficient and controllable divergent approach. Notably, the photosensitization efficiencies of these rotaxane-branched dendrimers gradually increased with the increase of dendrimer generation. For example, third-generation rotaxane-branched dendrimer PG3 revealed 13.3-fold higher 1O2 generation efficiency than its corresponding monomer AN. The enhanced 1O2 generation efficiency was attributed to the enhancement of intersystem crossing (ISC) through the simple and efficient incorporation of multiple heavy atoms and photosensitizer moieties on the axles and wheels of the rotaxane units, respectively, which has been validated by UV–visible and fluorescence techniques, time-dependent density functional theory calculations, photolysis model reactions, and apparent activation energy calculations. Therefore, we develop a new promising platform of rotaxane-branched dendrimers for the preparation of effective photosensitizers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.