The spindle assembly checkpoint (SAC) is essential for proper sister chromatid segregation. Defects in this checkpoint can lead to chromosome missegregation and aneuploidy. An increasing body of evidence suggests that aneuploidy can play a causal role in tumorigenesis. However, mutant mice that are prone to aneuploidy have only mild tumor phenotypes, suggesting that there are limiting factors in the aneuploidy-induced tumorigenesis. Here we provide evidence that p53 is such a limiting factor. We show that aneuploidy activates p53 and that loss of p53 drastically accelerates tumor development in two independent aneuploidy models. The p53 activation depends on the ataxia-telangiectasia mutated (ATM) gene product and increased levels of reactive oxygen species. Thus, the ATM-p53 pathway safeguards not only DNA damage but also aneuploidy.
The anaphase promoting complex (APC) or cyclosome is a multi-subunit E3 ubiquitin ligase. Cdc20 [fizzy (fzy), or p55CDC] and Cdh1 [Hct1, srw1, or fizzy-related 1 (fzr1)] encode two adaptor proteins that bring substrates to APC. Both APC-Cdc20 and APC-Cdh1 are implicated in the control of mitosis through mediating ubiquitination of mitotic regulators such as cyclin B1 and securin. However, the importance of the function of Cdh1 in vivo and whether its function is redundant with that of Cdc20 are unclear. We report here the analysis of mice lacking Cdh1. We show that Cdh1 is essential for placenta development and its deficiency causes early lethality. Cdh1-deficient mouse embryonic fibroblasts entered replicative senescence prematurely due to stabilization of Ets2 and subsequent activation of p16Ink4a expression. These results uncovered an unexpected role of APC in maintaining replicative life span of murine embryonic fibroblasts. Further, Cdh1 heterozygous mice display defects in late-phase long-term potentiation (L-LTP) in the hippocampus and are deficient in contextual fear conditioning, suggesting a role of Cdh1 in learning and memory.
To provide a more comprehensive understanding of the genes and evolutionary forces driving colorectal cancer (CRC) progression, we performed Sleeping Beauty (SB) transposon mutagenesis screens in mice carrying sensitizing mutations in genes that act at different stages of tumor progression. This approach allowed us to identify a set of genes that appear to be highly relevant for CRC and to provide a better understanding of the evolutionary forces and systems properties of CRC. We also identified six genes driving malignant tumor progression and a new human CRC tumor-suppressor gene, ZNF292, that might also function in other types of cancer. Our comprehensive CRC data set provides a resource with which to develop new therapies for treating CRC.
Refined cancer models are needed to bridge the gap between cell-line, animal and clinical research. Here we describe the engineering of an organotypic colon cancer model by recellularization of a native human matrix that contains cell-populated mucosa and an intact muscularis mucosa layer. This ex vivo system recapitulates the pathophysiological progression from APC-mutant neoplasia to submucosal invasive tumor. We used it to perform a Sleeping Beauty transposon mutagenesis screen to identify genes that cooperate with mutant APC in driving invasive neoplasia. 38 candidate invasion driver genes were identified, 17 of which have been previously implicated in colorectal cancer progression, including TCF7L2, TWIST2, MSH2, DCC and EPHB1/2. Six invasion driver genes that to our knowledge have not been previously described were validated in vitro using cell proliferation, migration and invasion assays, and ex vivo using recellularized human colon. These results demonstrate the utility of our organoid model for studying cancer biology.
Genomic instability is a hallmark of human cancers. Spindle assembly checkpoint (SAC) is a critical cellular mechanism that prevents chromosome missegregation and therefore aneuploidy by blocking premature separation of sister chromatids. Thus, SAC, much like the DNA damage checkpoint, is essential for genome stability. In this study, we report the generation and analysis of mice carrying a Cdc20 allele in which three residues critical for the interaction with Mad2 were mutated to alanine. The mutant Cdc20 protein (AAA-Cdc20) is no longer inhibited by Mad2 in response to SAC activation, leading to the dysfunction of SAC and aneuploidy. The dysfunction could not be rescued by the additional expression of another Cdc20 inhibitor, BubR1. Furthermore, we found that Cdc20AAA/AAA mice died at late gestation, but Cdc20+/AAA mice were viable. Importantly, Cdc20+/AAA mice developed spontaneous tumors at highly accelerated rates, indicating that the SAC-mediated inhibition of Cdc20 is an important tumor-suppressing mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.