Cyclopentadiene (CPD)and methylcyclopentadiene (MCPD) are important intermediates that have been widely used in the production of highenergy-density rocket fuels, polymers and valuable chemicals. Currently, CPD and MCPD are produced from fossil energies at very low yields, which greatly limits their application. As a solution to this problem, we disclose an alternative two-step bio-route to access CPD and MCPD using xylose or extracted hemicellulose as the feedstock. In the first step, cyclopentanone (CPO) was directly produced by the selective hydrogenolysis of xylose or extracted hemicellulose over a commercial Ru/ C catalyst in an acid-free toluene/NaCl aqueous solution biphasic system. In the second step, CPO was selectively converted to CPD by a cascade hydrodeoxygenation/ dehydrogenation reaction over zinc molybdate catalysts. When methanol was introduced with CPO and hydrogen, MCPD was selectively obtained by a cascade dehydrogenation/aldol condensation/selective hydrodeoxygenation reaction over zinc molybdate catalysts.
Cyclopentadiene (CPD) and methylcyclopentadiene (MCPD) are important intermediates that have been widely used in the production of high‐energy‐density rocket fuels, polymers and valuable chemicals. Currently, CPD and MCPD are produced from fossil energies at very low yields, which greatly limits their application. As a solution to this problem, we disclose an alternative two‐step bio‐route to access CPD and MCPD using xylose or extracted hemicellulose as the feedstock. In the first step, cyclopentanone (CPO) was directly produced by the selective hydrogenolysis of xylose or extracted hemicellulose over a commercial Ru/C catalyst in an acid‐free toluene/NaCl aqueous solution biphasic system. In the second step, CPO was selectively converted to CPD by a cascade hydrodeoxygenation/dehydrogenation reaction over zinc molybdate catalysts. When methanol was introduced with CPO and hydrogen, MCPD was selectively obtained by a cascade dehydrogenation/aldol condensation/selective hydrodeoxygenation reaction over zinc molybdate catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.