We prepared amphoteric hydrophobically associating polyacrylamides (AHAPAM) consisting mostly of hydrophilic polyacrylamide backbones, but also including the ionic hydrophobic monomer N,N-dimethyl octadeyl allyl ammonium chloride (DOAC) and the anionic monomer sodium 4-styrenesulfonate (SSS).The AHAPAM copolymer was prepared by carrying out aqueous solution polymerization. Macroscopic and microscopic self-assembly properties of AHAPAM in solution, as well as the effects of salt, temperature, and shearing on its association behavior were studied by carrying out viscosimetry, rheology, fluorescence spectroscopy (FS), and environmental scanning electron microscopy (ESEM) analyses. The results show that the association of the aqueous copolymer solutions were greatly affected by the concentration of the copolymer. The critical association concentration (CAC) of the AHAPAM solution was found to be 0.165 wt%, which was determined by carrying out viscometry and fluorescence spectroscopy experiments. Adding sodium chloride resulted in an increase in the apparent viscosity, which corresponded to the anti-polyelectrolyte solution behavior of AHAPAM. Meanwhile, intermolecular hydrophobic associations helped AHAPAM form a dynamic physically crosslinked network in its structure, conferring on AHAPAM strong heat-and shearing-resistance properties. The apparent viscosity of the 0.5 wt% copolymer solution was maintained at 92 mPa s at 140 C and 170 s À1 shearing for 1 h. FTIR and 1 H NMR spectra indicated the structure of the hydrophobically associating copolymers.And using the dilution extrapolation method, the intrinsic viscosity [h] of AHAPAM was shown to be 858.5 mL g À1 .
A bimannich-based TZBM containing a thiazole ring was obtained by synthesis of mannich bases. TZBM featured a stable structure at 260 °C, and corrosion inhibition effect on carbon steel in a gas–liquid environment with Cl− + H2S + CO2 at 180 °C. By analyzing the weight loss of steel exposed to different TZBM concentrations, the coverages of the inhibitor adsorbed on the surfaces were determined, and the results conformed to Langmuir isotherm model. Furthermore, the negative Gibbs free energy indicated that the adsorption was a spontaneous process.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.