Stone (hardened endocarp) has a very important role in the continuity of plant life. Nature has gifted plants with various seed protection and dispersal strategies. Stone-fruit-bearing species have evolved a unique adaptation in which the seed is encased in an extremely hard wood-like shell called the stone. The lignification of the fruit endocarp layer produces the stone, a feature that separates drupes from other plants. Stone cells emerge from parenchyma cells after programmed cell death and the deposition of cellulose and lignin in the secondary cell wall. Generally, the deposition of lignin in primary cell walls is followed by secondary thickening of cell walls to form stone cells. This review article describes the molecular mechanisms and factors that influence the production of stone in the fruit. This is the first review article that describes the molecular mechanisms regulating stone (harden endocarp) formation in fruits. This article will help breeders understand the molecular and genetic basis for the stone formation in fruit, and this could lead to new and innovative directions to breed stoneless fruit cultivars in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.