WW domain-containing E3 ubiquitin protein ligase1 (WWP1) is reported to be upregulated in many types of human cancers; however, its expression and function in intrahepatic cholangiocarcinoma (ICC) remain unknown. Here, in this study we investigated the expression pattern, clinical prognosis, tumor biological functions, and molecular mechanisms of WWP1 in ICC. The expression of WWP1 in patient tissues was detected by western blotting, immunohistochemistry (IHC), and immunofluorescence. CCK-8, colony formation, EdU, transwell, and xenograft models were used to explore the role of WWP1 in the proliferation and metastasis of ICC. Co-immunoprecipitation, mass spectrometry, chromatin immunoprecipitation, and immunofluorescence were performed to detect the potential mechanisms. Our study revealed that WWP1 was highly expressed in ICC, and high levels of WWP1 were associated with poor prognosis. Functionally, WWP1 overexpression enhanced the proliferation and metastasis of ICC cells and vice versa. Mechanistically, MYC could be enriched in the promoter region of WWP1 to facilitate its expression. Then, WWP1 targets Nedd4 family interacting protein1 (NDFIP1) and reduces NDFIP1 protein levels via ubiquitination. Downregulation of NDFIP1 in ICC cells rescued the effects of silenced WWP1 expression. WWP1 expression was also negatively correlated with the protein level of NDFIP1 in patient tissues. In conclusion, WWP1 upregulated by MYC promotes the progression of ICC via ubiquitination of NDFIP1, which reveals that WWP1 might be a potential therapeutic target for ICC.
Endogenous transfer RNA‐derived small RNAs (tsRNAs) are newly identified RNAs that are closely associated with the pathogenesis of multiple diseases, but the involvement of tsRNAs in regulating acute pancreatitis (AP) development has not been reported. In this study, we screened out a novel tsRNA, tRF3‐Thr‐AGT, that was aberrantly downregulated in the acinar cell line AR42J treated with sodium taurocholate (STC) and the pancreatic tissues of STC‐induced AP rat models. In addition, STC treatment suppressed cell viability, induced pyroptotic cell death and cellular inflammation in AP models in vitro and in vivo. Overexpression of tRF3‐Thr‐AGT partially reversed STC‐induced detrimental effects on the AR42J cells. Next, Z‐DNA‐binding protein 1 (ZBP1) was identified as the downstream target of tRF3‐Thr‐AGT. Interestingly, upregulation of tRF3‐Thr‐AGT suppressed NOD‐like receptor protein 3 (NLRP3)‐mediated pyroptotic cell death in STC‐treated AR42J cells via degrading ZBP1. Moreover, the effects of tRF3‐Thr‐AGT overexpression on cell viability and inflammation in AR42J cells were abrogated by upregulating ZBP1 and NLRP3. Collectively, our data indicated that tRF3‐Thr‐AGT suppressed ZBP1 expressions to restrain NLRP3‐mediated pyroptotic cell death and inflammation in AP models. This study, for the first time, identified the role and potential underlying mechanisms by which tRF3‐Thr‐AGT regulated AP pathogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.