Coarse-grained simulation approach is applied to provide a general understanding of various soluble, hydrophilic macroionic solutions, especially the strong attractions among the like-charged soluble macroions and the consequent spontaneous, reversible formation of blackberry structures with tunable sizes. This model captures essential molecular details of the macroions and their interactions in polar solvents. Results using this model provide consistent conclusions to the experimental observations, from the nature of the attractive force among macroions (counterion-mediated attraction), to the blackberry formation mechanism. The conclusions can be applied to various macroionic solutions from inorganic molecular clusters to dendrimers and biomacromolecules.
Various soluble hydrophilic macroions can self-assemble into hollow, spherical, monolayered supramolecular “blackberry”-type structures, despite their like-charged nature. However, how the 3-D symmetrical macroions prefer to form 2-D monolayers in bulk solution, especially for the highly symmetrical “Keplerate” polyoxometalates and functionalized C60 macroions has been a mystery. Through molecular dynamics simulations, using a model specifically designed for macroions in solution, the mechanism of this intriguing symmetry-breaking process is found to be related to the apparently asymmetric charge distribution on the surface of macroions in the equatorial belt area (the area which can be effectively involved in the counterion-mediated attraction). As a result, the electric field lines around macroions during the self-assembly process clearly show that the symmetry-breaking happens at the dimer level effectively defining the plane of the self-assembly. These findings are expected to contribute to our fundamental knowledge of complex solution systems that are found in many fields from materials science to biological phenomena.
New experiments show that tensile stress vanishes shortly after preyield deformation of polymer glasses while tensile stress after postyield deformation stays high and relaxes on much longer time scales, thus hinting at a specific molecular origin of stress in ductile cold drawing: chain tension rather than intersegmental interactions. Molecular dynamics simulation based on a coarse-grained model for polystyrene confirms the conclusion that the chain network plays an essential role, causing the glassy state to yield and to respond with a high level of intrachain retractive stress. This identification sheds light on the future development regarding an improved theoretical account for molecular mechanics of polymer glasses and the molecular design of stronger polymeric materials to enhance their mechanical performance.
Polymer glasses can be either ductile,
undergoing yielding and
necking, or brittle, suffering from crazing and brittle fracture.
Until recently, there was no satisfactory molecular-level interpretation
of these processes. In this work, carefully designed polystyrene glass
systems with new deformation protocol have been modeled using all-atom
molecular dynamics simulation. The effect of chain networking in terms
of yielding taking place in the presence of long chains embedded in
short chains is investigated. The results are compared with a recently
proposed molecular model, which suggests that the structural integrity,
necessary to prevent brittle fracture, is mainly due to chain networking.
We report herein an interesting dynamic translocation process of countercations around one polyoxometalate(POM)-organic hybrid anionic cluster at various concentrations and temperatures. It was found that both electrostatic interactions and cation-π interactions regulate the position of small countercations around single clusters. The dynamic geometry and the symmetry of the hybrid macroions are largely affected by the type of counterions, as shown by nuclear magnetic resonance (NMR) spectroscopy studies and all-atom molecular dynamics simulation. It is also shown that electrostatic interactions dominate over cation-π interactions in determining the locations of the counterions in the current system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.