Abstract:Free radicals play a negative role during the thermal degradation of silicone rubber (SR). Quenching free radicals is proposed to be an efficient way to improve the thermal-oxidative stability of SR. In this work, a novel zirconium-containing polyhedral oligometallasilsesquioxane (Zr-POSS) with free-radical quenching capability was synthesized and characterized. The incorporation of Zr-POSS effectively improved the thermal-oxidative stability of SR. The T 5 (temperature at 5% weight loss) of SR/Zr-POSS significantly increased by 31.7 • C when compared to the unmodified SR. Notably, after aging 12 h at 280 • C, SR/Zr-POSS was still retaining about 65%, 60%, 75%, and 100% of the tensile strength, tear strength, elongation at break, and hardness before aging, respectively, while the mechanical properties of the unmodified SR were significantly decreased. The possible mechanism of Zr-POSS for improving the thermal-oxidative stability of SR was intensively studied and it was revealed that the POSS structure could act as a limiting point to suppress the random scission reaction of backbone. Furthermore, Zr could quench the free radicals by its empty orbital and transformation of valence states. Therefore, it effectively suppressed the thermal-oxidative degradation and crosslinking reaction of the side chains.
We develop a compact full-color augmented reality near-eye display system with a multicolor holographic optical combiner and a freeform relay system. The digital image is produced by a full-color micro organic light-emitting diode (Micro-OLED) display module. The freeform relay system includes four freeform optics and a holographic optical mirror, which are employed to correct both the monochromatic and chromatic aberrations caused by the holographic optical combiner. The two multicolor holographic mirrors have a three-layer laminated structure and are delicately fabricated to yield an improved diffractive efficiency and a reduced efficiency difference for red, green, and blue colors. The high degrees of freedom of freeform optics, and the thin and light nature of the holographic optical combiner yield a compact form factor near-eye display system with a diagonal field of view (FOV) of 20° and the eye-box of 5 mm × 5 mm. Two prototypes are built to demonstrate the feasibility of the proposed display system.
We demonstrate an adaptive reconstruction technique to significantly improve the depth of focus and contrast of three-dimensional reflection-mode terahertz imaging. A laterally scanned virtual transceiver element records reflections from the object of interest. A synthetic aperture focusing technique maintains fine spatial resolution over a large image depth. Measuring the spatial coherence of the received signals across the transceiver aperture provides a non-iterative self-adaptive approach to significantly improve image contrast. Test images show a spatial resolution of 0.4 mm maintained over a 16 mm depth of field, and up to a 30 dB improvement in signal-to-noise ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.