BackgroundA lot of microRNAs (miRNAs) derived from viral genomes have been identified. Many of them play various important roles in virus replication and virus-host interaction. Cellular miRNAs have been shown to participate in the regulation of HIV-1 viral replication, while the role of viral-encoded miRNAs in this process is largely unknown.ResultsIn this report, through a strategy combining computational prediction and deep sequencing, we identified a novel HIV-1-encoded miRNA, miR-H3. MiR-H3 locates in the mRNA region encoding the active center of reverse transcriptase (RT) and exhibits high sequence conservation among different subtypes of HIV-1 viruses. Overexpression of miR-H3 increases viral production and the mutations in miR-H3 sequence significantly impair the viral replication of wildtype HIV-1 viruses, suggesting that it is a replication-enhancing miRNA. MiR-H3 upregulates HIV-1 RNA transcription and protein expression. A serial deletion assay suggests that miR-H3 targets HIV-1 5′ LTR and upregulates the promoter activity. It interacts with the TATA box in HIV-1 5′ LTR and sequence-specifically activates the viral transcription. In addition, chemically-synthesized small RNAs targeting HIV-1 TATA box activate HIV-1 production from resting CD4+ T cells isolated from HIV-1-infected patients on suppressive highly active antiretroviral therapy (HAART).ConclusionsWe have identified a novel HIV-1-encoded miRNA which specifically enhances viral production and provide a specific method to activate HIV-1 latency.
The TATA box represents one of the most prevalent core promoters where the pre-initiation complexes (PICs) for gene transcription are assembled. This assembly is crucial for transcription initiation and well regulated. Here we show that some cellular microRNAs (miRNAs) are associated with RNA polymerase II (Pol II) and TATA box-binding protein (TBP) in human peripheral blood mononuclear cells (PBMCs). Among them, let-7i sequence specifically binds to the TATA-box motif of interleukin-2 (IL-2) gene and elevates IL-2 mRNA and protein production in CD4 + T-lymphocytes in vitro and in vivo. Through direct interaction with the TATA-box motif, let-7i facilitates the PIC assembly and transcription initiation of IL-2 promoter. Several other cellular miRNAs, such as mir-138, mir-92a or mir-181d, also enhance the promoter activities via binding to the TATA-box motifs of insulin, calcitonin or c-myc, respectively. In agreement with the finding that an HIV-1-encoded miRNA could enhance viral replication through targeting the viral promoter TATA-box motif, our data demonstrate that the interaction with core transcription machinery is a novel mechanism for miRNAs to regulate gene expression.
Purpose This study aims to discuss the appropriate treatment strategy for spontaneous esophageal rupture. Methods Clinical data from twenty-one cases were retrospectively analyzed. The parameters included etiology, time interval between onset and treatment, therapy methods, prognosis, and length of stay. Results The ratio of males/females was 17/4, age range was 32–82 years (mean = 43.1), and the time interval between onset and treatment was as follows: <24 h: nine cases (42.8%); 24–48 h: six cases (28.6%); and >72 h: six cases (28.6%). All patients underwent operative treatment, and the following primary healing rates were achieved: <24 h: 88.9%, 24–48 h: 66.7%, and >72 h: 0. No patients died in this study. All patients were discharged with recovery, and the average hospitalization times were 18.1 days (<24 h), 27.8 days (24–48 h), and 51.2 days (>72 h). Conclusions Surgical treatment remains an effective method for treating spontaneous esophageal rupture, and the shorter the time interval between onset and treatment, possibly the better the prognosis.
The presence of an extremely stable latent reservoir of HIV-1 is the major obstacle to eradication, despite effective antiretroviral therapy (ART). Recent studies have shown that clonal expansion of latently infected cells without viral reactivation is an important phenomenon that maintains the long-term stability of the reservoir, yet its underlying mechanism remains unclear. Here we report that a subset of CD4+ T cells, characterized by CD161 expression on the surface, is highly permissive for HIV-1 infection. These cells possess a significantly higher survival and proliferative capacity than their CD161-negative counterparts. More importantly, we found that these cells harbor HIV-1 DNA and replication-competent latent viruses at a significantly higher frequency. By using massive single-genome proviral sequencing from ART-suppressed individuals, we confirm that CD161+ CD4+ T cells contain remarkably more identical proviral sequences, indicating clonal expansion of the viral genome in these cells. Taking the results together, our study identifies infected CD161+ CD4+ T cells to be a critical force driving the clonal expansion of the HIV-1 latent reservoir, providing a novel mechanism for the long-term stability of HIV-1 latency. IMPORTANCE The latent reservoir continues to be the major obstacle to curing HIV-1 infection. The clonal expansion of latently infected cells adds another layer maintaining the long-term stability of the reservoir, but its mechanism remains unclear. Here, we report that CD161+ CD4+ T cells serve as an important compartment of the HIV-1 latent reservoir and contain a significant amount of clonally expanded proviruses. In our study, we describe a feasible strategy that may reduce the size of the latent reservoir to a certain extent by counterbalancing the repopulation and dissemination of latently infected cells.
Small interfering RNAs (siRNAs) are widely used to repress gene expression by targeting mRNAs. Some reports reveal that siRNAs can also activate or inhibit gene expression through targeting the gene promoters. Our group has found that microRNAs (miRNAs) could activate gene transcription via interaction with the TATA-box motif in gene promoters. To investigate whether siRNA targeting the same region could upregulate the promoter activity, we test the activating efficiency of siRNAs targeting the TATA-box motif of 16 genes and perform a systematic analysis to identify the common features of the functional siRNAs for effective activation of gene promoters. Further, we try various modifications to improve the activating efficiency of siRNAs and find that it is quite useful to design the promoter-targeting activating siRNA by following several rules such as (a) complementary to the TATA-box-centered region; (b) UA usage at the first two bases of the antisense strand; (c) twenty-three nucleotides (nts) in length; (d) 2′-O-Methyl (2′-OMe) modification at the 3′ terminus of the antisense strand; (e) avoiding mismatches at the 3′ end of the antisense strand. The optimized activating siRNAs potently enhance the expression of interleukin-2 (IL-2) gene in human and mouse primary CD4+ T cells with a long-time effect. Taken together, our study provides a guideline for rational design the promoter-targeting siRNA to sequence-specifically enhance gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.