Control of workpiece machining error (WME) is a key concern in the design of a fixture system. In this paper, source errors, which are categorized into workpiece-fixture geometric default and workpiece-fixture compliance, are systematically investigated to reveal their effects upon the WME. The underlying mechanism is that source errors lead to the workpiece position error (WPE), the workpiece elastic deformations (WED), and the inconsistent datum error (IDE), and all of them will contribute together to the WME. Here, the IDE refers to the dimension deviation of the processing datum from the locating datum once two references do not coincide. An overall quantitative formulation is proposed for the computing of WME in terms of WPE, WED, and IDE for the first time. In detail, the WPE raised in the workpiece-locating and clamping process is evaluated based on the geometric defaults and local deformations of workpiece-fixture in the contact region. The WED relative to the workpiece-clamping process is determined by solving a nonlinear mathematical programming problem of minimizing the total complementary energy of the frictional workpiece-fixture system. Some numerical tests are finally demonstrated to validate the proposed approach on the basis of both theoretical and experimental data given in the references.
This paper proposes a dynamic RNA-encoded color image encryption scheme based on a chain feedback structure. Firstly, the color pure image is decomposed into red, green, and blue components, and then a chaotic sequence based on plaintext association is introduced to encrypt the red component. Secondly, the intermediate ciphertext is obtained by diffusion after encryption by bit-level permutation, RNA dynamic encoding, RNA dynamic operation rules, and RNA dynamic decoding. Finally, to enhance the security of the image cryptosystem, the green and blue components of the image are repeatedly encrypted using the chain encryption mechanism associated with the intermediate ciphertext to obtain the color cryptographic image. In this paper, a 2D-SFHM chaotic system is used to provide pseudo-random chaotic sequences, and its initial key is calculated by combining the hash function and external parameters of the image, and the one-time ciphertext encryption strategy causes the proposed encryption to effectively resist cryptographic attacks. Experimental results and security analysis show that our encryption algorithm has excellent encryption effects and security performance against various typical attacks.
Qin G H, Wang H M, Lin F, et al. A new approach to deformation control of aeronautical monolithic components of aluminum alloy plates based on stress inverse and stress evaluation (in Chinese).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.