With increasing speed and power density, high-performance memories, including FB-DIMM (Fully Buffered DIMM) and DDR2 DRAM, now begin to require dynamic thermal management (DTM) as processors and hard drives did. The DTM of memories, nevertheless, is different in that it should take the processor performance and power consumption into consideration. Existing schemes have ignored that. In this study, we investigate a new approach that controls the memory thermal issues from the source generating memory activities - the processor. It will smooth the program execution when compared with shutting down memory abruptly, and therefore improve the overall system performance and power efficiency. For multicore systems, we propose two schemes called adaptive core gating and coordinated DVFS. The first scheme activates clock gating on selected processor cores and the second one scales down the frequency and voltage levels of processor cores when the memory is to be over-heated. They can successfully control the memory activities and handle thermal emergency. More importantly, they improve performance significantly under the given thermal envelope. Our simulation results show that adaptive coregating improves performance by up to 23.3% (16.3% on average) on a four-core system with FB-DIMM when compared with DRAM thermal shutdown; and coordinated DVFS with control-theoretic methods improves the performance by up to 18.5% (8.3% on average).
Thermal management of DRAM memory has become a critical issue for server systems. We have done, to our best knowledge, the first study of software thermal management for memory subsystem on real machines. Two recently proposed DTM (Dynamic Thermal Management) policies have been improved and implemented in Linux OS and evaluated on two multicore servers, a Dell PowerEdge 1950 server and a customized Intel SR1500AL server testbed. The experimental results first confirm that a system-level memory DTM policy may significantly improve system performance and power efficiency, compared with existing memory bandwidth throttling scheme. A policy called DTM-ACG (Adaptive Core Gating) shows performance improvement comparable to that reported previously. The average performance improvements are 13.3% and 7.2% on the PowerEdge 1950 and the SR1500AL (vs. 16.3% from the previous simulation-based study), respectively. We also have surprising findings that reveal the weakness of the previous study: the CPU heat dissipation and its impact on DRAM memories, which were ignored, are significant factors. We have observed that the second policy, called DTM-CDVFS (Coordinated Dynamic Voltage and Frequency Scaling), has much better performance than previously reported for this reason. The average improvements are 10.8% and 15.3% on the two machines (vs. 3.4% from the previous study), respectively. It also significantly reduces the processor power by 15.5% and energy by 22.7% on average.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.