Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56(+) and cytoCD3(+) lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations. The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors (TP53 and MGA), JAK-STAT-pathway molecules (STAT3 and STAT5B) and epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL.
BackgroundMetformin is a commonly used drug for the treatment of diabetes. Accumulating evidence suggests that it exerts anti-tumor effects in many cancers, including multiple myeloma (MM); however, the underlying molecular mechanisms have not been clearly elucidated.MethodsThe anti-myeloma effects of metformin were evaluated using human MM cell lines (RPMI8226 and U266) in vitro and in vivo NOD-SCID murine xenograft MM model. Cell viability was assessed with CCK8 and cell proliferation was measured by EdU incorporation assay. Cell cycle distribution and apoptosis were examined by flow cytometry. Transmission electron microscopy was used to visualized autophagosomes. Activation of AMPK and inhibition of mTORC1/C2 pathways was assessed by Western blot analysis. RPMI8226 cells and U266 cell lines with AMPK knockdown were generated by transfection with small interfering RNA targeting the AMPK-α1 and α2 subunits using Lipofectamine 2000 reagent.ResultsMetformin effectively inhibited the proliferation of MM cell lines, an effect that was associated with the induction of autophagy and G0/G1 cell cycle arrest, but not apoptosis. Metformin activated AMPK and repressed both mTORC1 and mTORC2 signaling pathways in myeloma cells as well as downstream molecular signaling pathways, such as p-4EBP1 and p-AKT. AMPK activation resulted in direct phosphorylation and activation of tuberous sclerosis complex 2 (TSC2), leading to inhibition of the mammalian target of rapamycin (mTOR). In addition, metformin inhibited myeloma cell growth in an AMPK-dependent manner. The xenograft mouse model further confirmed that metformin inhibited tumor growth by upregulation of AMPK and downregulation of mTOR.ConclusionsMetformin inhibits the proliferation of myeloma cells by inducing autophagy and cell-cycle arrest. Our results suggest that the molecular mechanism involves dual repression of mTORC1 and mTORC2 pathways via AMPK activation. Our study provides a theoretical basis for the development of novel strategies for the treatment of MM using metformin as an already approved and safe drug.
Natural-killer/T cell lymphoma (NKTCL) is a malignant proliferation of CD56+/cytoCD3+ lymphocytes and constitutes a heterogeneous group of aggressive lymphoma prevalent in Asian and South American populations. NKTCL represents a distinct clinicopathologic entity of non-Hodgkin’s lymphoma, characterized by male predominance, strong association with Epstein-Barr virus (EBV) infection, prominent tissue necrosis and aggressive clinical course. However, molecular pathogenesis of NKTCL remains largely elusive. Here we identified somatic mutations by whole-exome sequencing in 25 NKTCL patients and extended validation through targeted sequencing in an additional 80 cases. Functional experiments including RNA unwinding test, colony forming assay, cell proliferation assay and gene expression profiling were also performed. Overall, 50.5% of NKTCL patients displayed somatic mutations of RNA helicase family, tumor suppressors (TP53 and MGA), and/or epigenetic modifiers (MLL2, ARID1A, EP300 and ASXL3). Recurrent mutations were most frequently discovered in RNA helicase gene DDX3X (21/105 cases, 20.0%). Mutations of DDX3X were seldom overlapped with those of TP53. Functionally, DDX3X mutants exhibited reduced RNA unwinding activity and enhanced cell proliferation. Similar stimulatory effect on cell proliferation was observed in cells transfected with specific siRNA targeting DDX3X. Gene expression profiling revealed an association of DDX3X mutations with activation of NF-kB and MAPK pathways. The clinical follow-up data showed that DDX3X-mutated patients presented a poor prognosis. Our work suggests the heterogeneity of gene mutational spectrum of NKTCL and provides a potential therapeutic target for relevant cases. Disclosures No relevant conflicts of interest to declare.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.