Apitherapy is an alternate therapy that relies on the usage of honeybee products, most importantly bee venom for the treatment of many human diseases. The venom can be introduced into the human body by manual injection or by direct bee stings. Bee venom contains several active molecules such as peptides and enzymes that have advantageous potential in treating inflammation and central nervous system diseases, such as Parkinson’s disease, Alzheimer’s disease, and amyotrophic lateral sclerosis. Moreover, bee venom has shown promising benefits against different types of cancer as well as anti-viral activity, even against the challenging human immunodeficiency virus (HIV). Many studies described biological activities of bee venom components and launched preclinical trials to improve the potential use of apitoxin and its constituents as the next generation of drugs. The aim of this review is to summarize the main compounds of bee venom, their primary biological properties, mechanisms of action, and their therapeutic values in alternative therapy strategies.
Antimicrobial peptides constitute one of the most promising alternatives to antibiotics since they could be used to treat bacterial infections, especially those caused by multidrug-resistant pathogens. Many antimicrobial peptides, with various activity spectra and mechanisms of actions, have been described. This review focuses on their use against ESKAPE bacteria, especially in biofilm treatments, their synergistic activity, and their application as prophylactic agents. Limitations and challenges restricting therapeutic applications are highlighted, and solutions for each challenge are evaluated to analyze whether antimicrobial peptides could replace antibiotics in the near future.
Maurocalcine is a novel toxin isolated from the venom of the chactid scorpion Scorpio maurus palmatus. It is a 33-mer basic peptide cross-linked by three disulfide bridges, which shares 82% sequence identity with imperatoxin A, a scorpion toxin from the venom of Pandinus imperator. Maurocalcine is peculiar in terms of structural properties since it does not possess any consensus motif reported so far in other scorpion toxins. Due to its low concentration in venom (0.5% of the proteins), maurocalcine was chemically synthesized by means of an optimized solid-phase method, and purified after folding/oxidation by using both C18 reversed-phase and ion exchange highpressure liquid chromatographies. The synthetic product (sMCa) was characterized. The half-cystine pairing pattern of sMCa was identified by enzyme-based cleavage and Edman sequencing. The pairings were Cys3-Cys17, Cys10-Cys21, and Cys16-Cys32. In vivo, the sMCa was lethal to mice following intracerebroventricular inoculation (LD 50 , 20 W Wg/mouse). In vitro, electrophysiological experiments based on recordings of single channels incorporated into planar lipid bilayers showed that sMCa potently and reversibly modifies channel gating behavior of the type 1 ryanodine receptor by inducing prominent subconductance behavior.z 2000 Federation of European Biochemical Societies.
Apamin-sensitive small conductance calcium-activated potassium channels (SKCa1-3) mediate the slow afterhyperpolarization in neurons, but the molecular identity of the channel has not been defined because of the lack of specific inhibitors. Here we describe the structure-based design of a selective inhibitor of SKCa2. Leiurotoxin I (Lei) and PO5, peptide toxins that share the RXCQ motif, potently blocked human SKCa2 and SKCa3 but not SKCa1, whereas maurotoxin, Pi1, Ts, and PO1 were ineffective. Lei blocked these channels more potently than PO5 because of the presence of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.