Highly oriented and transparent ZnO thin films have been fabricated on ultrasonically cleaned quartz substrates by the sol-gel technique. X-ray diffraction, UV-VIS, FTIR, photoluminescence and SEM are used to characterize ZnO thin films. X-ray diffraction study show that all the films prepared in this work have hexagonal wurtzite structure, with lattice constants a = b = 3.260 Å, c = 5.214 Å. The optical band gap energy of the thin films is found to be direct allowed transition ~3.24 eV. The FTIR spectrum of the film has the characteristics ZnO absorption band at 482 cm<sup>?1</sup>. The photoluminescence spectrum of the samples has an UV emission peak centred at 383 nm with broad band visible emission centred in the range of 500 - 600 nm
A poly(vinyledene difluoride)-lithium bis(oxalato)borate solid polymer electrolyte prepared by a solvent casting method has been irradiated with different doses of gamma-rays. Differential scanning calorimetry reveals that the polymer electrolyte irradiated with 35 kGy of γ-rays is the most amorphous sample. This is also supported by the results obtained from X-ray diffraction. The Fourier transform infrared spectrum of each irradiated sample has been deconvoluted in the wavenumber region between 1830 and 1758 cm(-1) in order to predict the percentage of free and contact ions in the samples. The sample exposed to 35 kGy of γ-rays contains the highest percentage of free ions and the lowest amount of contact ions. This sample also exhibits the highest room temperature conductivity of 3.05 × 10(-4) S cm(-1), which is 15% higher relative to the virgin sample. The number density of free ions is observed to have more control on the conductivity variation with the γ-radiation dose compared to ionic mobility. This study confirms that γ-irradiation can be a potential way to obtain highly conductive and mechanically stable polymer electrolytes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.