Optical distortion due to inaccurate optical alignment, lens nonlinearity, and/or refraction by optical windows, fluid interfaces, and other optical elements of an experiment causes inaccuracy by introducing variable magnification. Since fractional changes in the magnification have a one-to-one effect on the accuracy of measuring the velocity, it is important to compensate for such distortions. A general experimental calibration procedure is described which determines the magnification matrix of a distorted imaging system, and an algorithm is presented to compute accurate velocity field displacements from measurements of distorted PIV images. These procedures form a basis for generalized stereoscopic PIV procedures which permit easy electronic registration of multiple cameras and accurate recombination of stereoscopic displacement fields to obtain the three-dimensional velocity vector field.
Turbulent flow in a rectangular channel is investigated to determine the scale and pattern of the eddies that contribute most to the total turbulent kinetic energy and the Reynolds shear stress. Instantaneous, two-dimensional particle image velocimeter measurements in the streamwise-wall-normal plane at Reynolds numbers Reh = 5378 and 29 935 are used to form two-point spatial correlation functions, from which the proper orthogonal modes are determined. Large-scale motions – having length scales of the order of the channel width and represented by a small set of low-order eigenmodes – contain a large fraction of the kinetic energy of the streamwise velocity component and a small fraction of the kinetic energy of the wall-normal velocities. Surprisingly, the set of large-scale modes that contains half of the total turbulent kinetic energy in the channel, also contains two-thirds to three-quarters of the total Reynolds shear stress in the outer region. Thus, it is the large-scale motions, rather than the main turbulent motions, that dominate turbulent transport in all parts of the channel except the buffer layer. Samples of the large-scale structures associated with the dominant eigenfunctions are found by projecting individual realizations onto the dominant modes. In the streamwise wall-normal plane their patterns often consist of an inclined region of second quadrant vectors separated from an upstream region of fourth quadrant vectors by a stagnation point/shear layer. The inclined Q4/shear layer/Q2 region of the largest motions extends beyond the centreline of the channel and lies under a region of fluid that rotates about the spanwise direction. This pattern is very similar to the signature of a hairpin vortex. Reynolds number similarity of the large structures is demonstrated, approximately, by comparing the two-dimensional correlation coefficients and the eigenvalues of the different modes at the two Reynolds numbers.
Centipedes have venom glands in their first pair of limbs, and their venoms contain a large number of components with different biochemical and pharmacological properties. However, information about the compositions and functions of their venoms is largely unknown. In this study, Scolopendra subspinipes dehaani venoms were systematically investigated by transcriptomic and proteomic analysis coupled with biological function assays. After random screening approximately 1500 independent clones, 1122 full length cDNA sequences, which encode 543 different proteins, were cloned from a constructed cDNA library using a pair of venom glands from a single centipede species. Neurotoxins, ion channel acting components and venom allergens were the main fractions of the crude venom as revealed by transcriptomic analysis. Meanwhile, 40 proteins/peptides were purified and characterized from crude venom of S. subspinipes dehaani. The N-terminal amino acid sequencing and mass spectrum results of 29 out of these 40 proteins or peptides matched well with their corresponding cDNAs. The purified proteins/peptides showed different pharmacological properties, including the following: (1) platelet aggregating activity; (2) anticoagulant activity; (3) phospholipase A(2) activity; (4) trypsin inhibiting activity; (5) voltage-gated potassium channel activities; (6) voltage-gated sodium channel activities; (7) voltage-gated calcium channel activities. Most of them showed no significant similarity to other protein sequences deposited in the known public database. This work provides the largest number of protein or peptide candidates with medical-pharmaceutical significance and reveals the toxin nature of centipede S. subspinipes dehaani venom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.