Low-temperature plasma technology is widely used in various industrial fields, which require the plasma to be of large volume, diffuse, and stable. Furthermore, previous studies have shown that better plasma performance has been obtained by using generators with a high voltage, a high repetition rate, a fast rise time, and a short pulse duration. In this paper, a novel topology is proposed for such generators, which is based on magnetic switches and diode opening switches. A prototype is developed, and its output characteristics are investigated by varying essential parameters, such as the load resistance and the power supply voltage. The experimental results show that it can generate pulses with a voltage of 30.6 kV, a rise time of 7.1 ns, a pulse duration of 8.2 ns, and a maximum repetition rate of 12 kHz on a 300 Ω resistive load. The prototype has been successfully used to drive uniform plasma in ambient air. In the proposed topology, a diode is added to make the magnetic cores independent of each other, significantly simplifying the design calculation. It may help develop nanosecond solid-state generators.
Avalanche transistor Marx bank circuits (MBCs) are widely used in high voltage repetitive nanosecond pulse generators, but problems exist with respect to increasing the output voltage due to the limited pulsed current. Accordingly, a novel topology based on an avalanche transistor MBC combined with a linear transformer driver is proposed, the latter of which exhibits advantageous stress distribution and modular structure. A four-module prototype with four units in each module is developed in the laboratory. The output characteristics are investigated by varying important parameters such as the main capacitance, the number of conducting units, the number of cascaded modules, and the trigger signal time delay. The test results verify the validity of the proposed topology. For a 50 Ω resistive load, the prototype can generate pulses with an amplitude of 10.9 kV, a rise time of 3.3 ns, and a voltage superposition efficiency of 89%. The topology proposed in this paper may help to provide a method to further improve the output performance of avalanche transistor MBCs.
Pulsed power technology is gradually forming a development trend of civil-military integration, which puts forward more requirements for pulsed power generators. This paper takes magnetic switches (MSs) as the starting point and reviews recent advancements in pulse generators based on MSs. First, the working mechanism of the MS “rapid inductance drop after magnetic core saturation” is analyzed. Second, the basic uses of MSs are introduced with specific examples, namely, magnetic compression unit, saturated pulse transformer, and magnetic delay switches. Then, the typical topologies of pulse generators based on MSs are discussed, including transmission line, Marx, Fitch, linear transformer driver, and semiconductor opening switch pumping circuits. These circuits’ technical characteristics and parameter levels are highlighted. Finally, the existing problems and future development trends of MS-based solid-state pulse generators are discussed.
With the development of technology, low-temperature plasma plays an increasingly important role in industrial applications. The industrial application of low-temperature plasma has the following requirements for plasma, high electron energy, low macroscopic temperature, and uniformity. Low-temperature plasma driven by nanosecond pulses reflects more significant advantages in these aspects compared to direct current plasma and alternating current plasma. In this paper, a simple topology is proposed, which is based on the pseudospark switch and the diode opening switch. A pulse generator is developed, which can eventually output pulses with an amplitude of 106 kV, a rise time of 15.5 ns, a pulse width of 46 ns, and a maximum repetition rate of 1 kHz on a 260 Ω resistive load. The pulse generator can successfully drive needle-plate discharge plasma in ambient air. It has excellent parameters, stability, compactness, and a long lifetime. The proposed topology may be helpful for nanosecond pulse generators with amplitude ranging from tens to hundreds of kilovolts, which could be widely used in industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.