Pulmonary surfactant is a complex and highly surface-active material. It covers the alveolar epithelium and consists of 90% lipids and 10% proteins. Pulmonary surfactant lipids together with pulmonary surfactant proteins facilitate breathing by reducing surface tension of the air-water interface within the lungs, thereby preventing alveolar collapse and the mechanical work required to breathe. Moreover, pulmonary surfactant lipids, such as phosphatidylglycerol and phosphatidylinositol, and pulmonary surfactant proteins, such as surfactant protein A and D, participate in the pulmonary host defense and modify immune responses. Emerging data have shown that pulmonary surfactant lipids modulate the inflammatory response and antiviral effects in some respiratory viral infections, and pulmonary surfactant lipids have shown promise for therapeutic applications in some respiratory viral infections. Here, we briefly review the composition, antiviral properties, and potential therapeutic applications of pulmonary surfactant lipids in respiratory viral infections.
ObjectiveGut microbiota dysbiosis is closely linked to the pathogenesis of rheumatoid arthritis (RA). We aimed to identify potential probiotic gut microbes that can ameliorate the development of RA.DesignMicrobiota profiling in patients with RA and healthy individuals was investigated via 16S rDNA bacterial gene sequencing and shotgun metagenomics. Collagen-induced arthritic mice and TNF-α transgenic mice were used to evaluate the roles of the gut commensalParabacteroides distasonisin RA. The effects ofP. distasonis-derived microbial metabolites on the differentiation of CD4+T cells and macrophage polarisation were also investigated.ResultsThe relative abundance ofP. distasonisin new-onset patients with RA and patients with RA with history of the disease was downregulated and this decrease was negatively correlated with Disease Activity Score-28 (DAS28). Oral treatment of arthritic mice with liveP. distasonis(LPD) considerably ameliorated RA pathogenesis. LPD-derived lithocholic acid (LCA), deoxycholic acid (DCA), isolithocholic acid (isoLCA) and 3-oxolithocholic acid (3-oxoLCA) had similar and synergistic effects on the treatment of RA. In addition to directly inhibiting the differentiation of Th17 cells, 3-oxoLCA and isoLCA were identified as TGR5 agonists that promoted the M2 polarisation of macrophages. A specific synthetic inhibitor of bile salt hydrolase attenuated the antiarthritic effects of LPD by reducing the production of these four bile acids. The natural product ginsenoside Rg2 exhibited its anti-RA effects by promoting the growth ofP. distasonis.ConclusionsP. distasonisand ginsenoside Rg2 might represent probiotic and prebiotic agents in the treatment of RA.
Background: Our previous clinical evidence suggested that the direct application of "Sanse powder" the main ingredient of "Yiceng" might represent an alternative treatment for knee osteoarthritis. However, the mechanism underlying its effect is poorly understood. In this study, we investigated the mechanism of the effect of direct "Sanse powder" application for the treatment of knee osteoarthritis (KOA) in rats by using lipidomics. Methods: KOA rats were established by cutting the anterior cruciate ligament, and the cold pain threshold and mechanical withdrawal threshold (MWT) of seven rats from each group were measured before modelling (0 days) and at 7, 14, 21 and 28 days after modelling. Histopathological evaluation of the synovial tissue was performed by haematoxylin and eosin (H&E) staining after modelling for 28 days. Interleukin-1β (IL-1β), pro-interleukin-1β (pro-IL-1β) and tumor necrosis factor-α (TNF-α) proteins in synovial tissue were measured by western blot, and the mRNA expression levels of IL-1β and TNF-α in synovial tissue were measured using Real-time reverse transcription polymerase chain reaction (qRT-PCR), the levels of IL-1β and TNF-α in rat serum were measured by enzyme-linked immunosorbent assay (ELISA), Serum lipid profiles were obtained by using ultra-performance liquid chromatography combined with quadrupole-Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap MS). Results: The results confirmed that the direct application of "Sanse powder" had a significant protective effect against KOA in rats. Treatment with "Sanse powder" not only attenuated synovial tissue inflammation but also increased the levels of the cold pain threshold and MWT. In addition, the lipidomics results showed that the levels of diacylglycerol (DAG), triacylglycerols (TAGs), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), fatty acid esters of hydroxy fatty acids (FAHFAs), and phosphatidylethanolamine (PE) were restored almost to control levels following treatment. Conclusions: Lipidomics provides a better understanding of the actions of direct application "Sanse powder" therapy for KOA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.