Low-temperature solution processing opens a new window for the fabrication of oxide semiconductors due to its simple, low cost, and large-area uniformity. Herein, by using solution combustion synthesis (SCS), p-type Cu-doped NiO (Cu:NiO) thin films are fabricated at a temperature lower than 150 °C. The light doping of Cu substitutes the Ni site and disperses the valence band of the NiO matrix, leading to an enhanced p-type conductivity. Their integration into thin-film transistors (TFTs) demonstrates typical p-type semiconducting behavior. The optimized Cu NiO TFT exhibits outstanding electrical performance with a hole mobility of 1.5 cm V s , a large on/off current ratio of ≈10 , and clear switching characteristics under dynamic measurements. The employment of a high-k ZrO gate dielectric enables a low operating voltage (≤2 V) of the TFTs, which is critical for portable and battery-driven devices. The construction of a light-emitting-diode driving circuit demonstrates the high current control capability of the resultant TFTs. The achievement of the low-temperature-processed Cu:NiO thin films via SCS not only provides a feasible approach for low-cost flexible p-type oxide electronics but also represents a significant step toward the development of complementary metal-oxide semiconductor circuits.
Solution‐processed oxide semiconductor and dielectric thin films have been widely studied for achieving flexible, high‐performance, and low‐power electronics and circuits. In this report, high‐k HfO2 dielectrics and amorphous ZnSnO (ZTO) semiconductors are synthesized via a simple and facile redox reaction by introducing perchloric acid (HClO4, PA) as oxidizer to eliminate the Cl residuals. Thermogravimetric analysis indicates that the thermal decomposition of PA‐involved HfCl4(PA‐HfO2) xerogel is completed at 350 °C, whereas the decomposition temperature of pristine HfCl4 xerogel is higher than 450 °C. The optical, structural, morphological, compositional, and electrical properties of PA‐HfO2 and the pristine HfO2 dielectric films are investigated systematically. Meanwhile, by using chloride elimination reaction, PA‐ZTO semiconducting thin films are fabricated at various temperatures and their applications in thin‐film transistors (TFTs) are examined. Furthermore, the optimized PA‐ZTO channel layer is fabricated on PA‐HfO2 dielectric. The resulting device exhibits high electrical performance and operational stability at a low voltage of 2 V, including high saturation mobility of 13.2 cm2 V−1 s−1, small subthreshold slope of 70 mV dec−1, current ratio of 108, and threshold voltage shift of 0.05 V under positive bias stress for 3000 s. Finally, a low‐voltage resistor‐loaded inverter is built using PA‐ZTO/PA‐HfO2 TFT, exhibiting a linear relationship between supplied voltage and gain voltage and a maximum gain of 11 at 2.5 V.
Electrospun metal oxide nanofibers have been regarded as promising blocks for large-area, low-cost, and one-dimensional electronic devices. However, the electronic devices based on electrospun nanofibers usually suffer from poor performance and inferior viability. Here, we report an efficient photochemical process using UV light generated by a high-pressure mercury lamp to promote the electrical performance of the nanofiber-based electronic devices. Such UV treatment can lead to strong photochemical activation of electrospun nanofibers, and therefore, a stable adherent nanofiber network and electronic-clean interface were formed. By use of UV treatment, high-performance indium oxide (InO) nanofiber based field-effect transistors (FETs) with highly efficient modulation of electrical characteristics have been successfully fabricated. To reduce the operating voltage and further improve the device performance, the InO nanofiber FETs based on solution-processed high-k AlO dielectrics were integrated and investigated. The as-fabricated InO/AlO FETs exhibit superior electrical performance, including a high mobility of 19.8 cm V s, a large on/off current ratio of 10, and high stability over time and cycling. The improved performance of the UV-treated FETs was further confirmed by the integration of the electrospun InO/AlO FETs into inverters. This work presents an important advance toward the practical applications of electrospun nanofibers for functional electronic devices.
Recently, semiconducting nanofiber networks (NFNs) have been considered as one of the most promising platforms for large-area and low-cost electronics applications. However, the high contact resistance among stacking nanofibers remained to be a major challenge, leading to poor device performance and parasitic energy consumption. In this report, a controllable welding technique for NFNs was successfully demonstrated via a bioinspired capillary-driven process. The interfiber connections were well-achieved via a cooperative concept, combining localized capillary condensation and curvature-induced surface diffusion. With the improvements of the interfiber connections, the welded NFNs exhibited enhanced mechanical property and high electrical performance. The field-effect transistors (FETs) based on the welded Hf-doped InO (InHfO) NFNs were demonstrated for the first time. Meanwhile, the mechanisms involved in the grain-boundary modulation for polycrystalline metal-oxide nanofibers were discussed. When the high-k ZrO dielectric thin films were integrated into the FETs, the field-effect mobility and operating voltage were further improved to be 25 cm V s and 3 V, respectively. This is one of the best device performances among the reported nanofibers-based FETs. These results demonstrated the potencies of the capillary-driven welding process and grain-boundary modulation mechanism for metal-oxide NFNs, which could be applicable for high-performance, large-scale, and low-power functional electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.