Sulfides are well investigated as thermoelectric materials but their performance is typically limited by low electrical conductivity. High electrical performance in Cu3SbS4 is reported by creating high valence vacancies, which efficiently provides multiple carriers. It is revealed from the perspective of a chemical bond by calculations that Al can serve as vacancy stabilizer as its entry into the lattice forms intensified bonds with neighboring atoms and lowers the vacancy formation energy. As a result, the average power factor of Cu3SbS4 with 9 wt% CuAlS2 reaches 16.1 µW cm−1 K−2. Finally, by further addition of AgAlS2, a peak zT of 1.3 and an average zT of 0.77 are obtained due to the reduced thermal conductivity. The attained average power factor and average zT are superior to other low‐toxic thermoelectric sulfides. The findings shed light on the new strategy for creating favorable vacancies to realize high‐efficiency doping in thermoelectric materials.
High quantum efficiency (QE) and thermally stable emission are indispensable for the applications of phosphors. Owing to the strong coupling between the lattice and naked d-orbitals of Mn4+, Mn4+-activated oxide...
Incorporation of 4-fold coordination geometry preferring Ge4+ ions into the palmierite-like layers of Ba3Mo1+xNb1−2xGexO8.5 resulted in enhanced oxide ionic conductivities at intermediate temperatures.
Complex thermoelectric materials composed of multiple phases with order/disorder mixing feature have drawn intense attention due to their high performance. However, some physical mechanisms relevant to thermoelectric properties including the relationship between carrier mobility and disorder extent in these materials are still elusive. Here, a phase‐dependent mobility edge in (Cu2Sn1‐yS3)0.85(CuGaS2)0.15 solid solutions is demonstrated. By control over the mobility edge in these solid solutions by increasing the ratio of tetragonal phase with less disorder, a weakened localization of electronic states and promoted carrier mobility are realized. Combined with reduced lattice thermal conductivity, a record high zT value of 1.22 is attained at 823 K for (Cu2Sn0.92S3)0.85(CuGaS2)0.15 with the lowered mobility edge. The findings shed light on a new route to tuning the electrical and thermal transport properties for complex thermoelectric materials with multiple phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.