The development of an oral insulin therapy remains an ultimate goal to both enhance ease of use, and to provide therapeutic advantages rooted in its direct delivery to the portal vein and liver. The current study aimed to develop a novel formula for insulin oral administration against experimental diabetes in rats. Entrapped insulin (INS) between chitosan nanoparticles (CSNPs) and layered duple hydroxide (LDH) (LDH-INS-CSNPs) was chemically prepared, and characterized by X-ray diffraction, Fourier transformation infrared, high-resolution transmission electron microscope, field emission scanning electron microscope and Zeta potential measurements. The insulin release study was conducted in vitro, while the oral hypoglycemic effect of LDH-INS-CSNPs was investigated in vivo in diabetic rats. The prepared formulas revealed a variation in the spectra of characterization methods. The insulin entrapment between LDH and chitosan avoided the burst release of insulin and acid denaturation in the stomach and enzymatic degradation throughout the gut. Consequently, the blood glucose level of LDH-INS-CSNPs formula exhibited a marked hypoglycemic effect. The present work showed that the LDH-INS-CSNPs formula had a protective effect against enzymatic degradation, reduced insulin initial burst release, and enhanced bioavailability through the oral administration route. Interestingly, the presented formula could be an oral antidiabetic agent alternative to injectable insulin.
The study’s goal was to look into the protective properties of quercetin (QU) and QU-loaded chitosan nanoparticles (QU-CHSNPs) against cardiotoxicity. The ionotropic gelation approach was adopted to form QU-CHSNPs. The characterizations were performed using advanced techniques. In vitro, the release profile of QU was studied. Cardiotoxicity was induced by doxorubicin (DOX) and protected via concurrent administration of QU and QU-CHSNPs. The heart’s preventive effects of QU and QU- CHSNPs were signified by a decline in the raised serum activities of cardiac enzymes together with the improvement of the heart's antioxidant defence system and heart histological changes. The findings substantiated QU-CHSNPs' structure with an entrapment efficiency of 92.56%. The mean of the Zeta size distribution was 150 nm, the real average particle size was 50 nm, and the zeta potential value was − 27.9 mV, exhibiting low physical stability. The percent of the free QU-cumulative release was about 70% after 12 hours, and QU-CHSNPs showed a 49% continued release with a pattern of sustained release, reaching 98% after 48 hours. And as such, QU and QU-CHSNPs restrained the induced cardiotoxicity of DOX in male Wistar rats, with the QU-CHSNPs being more efficient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.