Dental care is consistently reported as one of the primary medical needs of children with disabilities (IDC). The aim of the present study was to explore the influence of oral health behaviors on the caries experience in children with intellectual disabilities in Guangzhou, China. A cross-sectional study was carried out in 477 intellectually disabled children, 12 to 17 years old, who were randomly selected from special educational schools in Guangzhou. A self-administered parental questionnaire was used to collect data on socio-demographic characteristics and oral health behavior variables, and 450 valid questionnaires were returned. Multiple regression analysis was used to examine the factors associated with dental caries. The average age of those in the sample was 14.6 years (SD = 1.3), 68.4% of whom were male, and the caries prevalence rate was 53.5% (DMFT = 1.5 ± 2.0). The factors significantly affecting the development of dental caries in IDC included gender, the presence or absence of cerebral palsy, and the frequency of dental visits and toothbrushing. In conclusion, the presence of cerebral palsy contributed to an increase risk of caries experience in intellectually disabled children, while toothbrushing more than twice a day and routine dental visits were caries-protective factors. Oral health promotion action may lead to a reduction in dental caries levels in IDC.
Pristine GO nanosheets at a concentration of 0.1 μg/mL provide benefits to promote BMSCs proliferation and osteogenesis under a sequential-seeding method, contributing to the use of GO for dental implantation.
Protein sequence profile prediction aims to generate multiple sequences from structural information to advance the protein design. Protein sequence profile can be computationally predicted by energy-based method or fragment-based methods. By integrating these methods with neural networks, our previous method, SPIN2 has achieved a sequence recovery rate of 34%. However, SPIN2 employed only one dimensional (1D) structural properties that are not sufficient to represent 3D structures. In this study, we represented 3D structures by 2D maps of pairwise residue distances. and developed a new method (SPROF) to predict protein sequence profile based on an image captioning learning frame. To our best knowledge, this is the first method to employ 2D distance map for predicting protein properties. SPROF achieved 39.8% in sequence recovery of residues on the independent test set, representing a 5.2% improvement over SPIN2. We also found the sequence recovery increased with the number of their neighbored residues in 3D structural space, indicating that our method can effectively learn long range information from the 2D distance map. Thus, such network architecture using 2D distance map is expected to be useful for other 3D structure-based applications, such as binding site prediction, protein function prediction, and protein interaction prediction.
The surface plasmon catalytic selective aerobic oxidation of aromatic amines to aromatic azo compounds in metal/molecule/metal junctions was explored by density functional theory. The overall reaction could be divided into the initial plasmon-induced oxygen activation and the subsequent photothermal-driven dehydrogenation process. The activation of oxygen on silver and gold surfaces is proposed through a surface plasmon-mediated hot electron injection mechanism at solid/gas interface. Resonance absorption of incident light by metal nanostructures generates energetic electron–hole pairs. Time-dependent density functional theory calculations illustrate that the excited hot electrons created on metal surfaces can transfer to the antibonding 2π* orbital of adsorbed oxygen, which facilitates the dissociation of O2 on metal surfaces. Silver shows better catalytic performance for the oxygen activation due to its stronger surface plasmon resonance absorption intensity and higher hot electron energy level. Aromatic amines adsorbed on the metal surfaces can be selectively oxidized to the corresponding azo compounds by the activated surface oxygen species. The aerobic oxidations of p-aminothiophenol in the nanogaps between metal substrate and three different nanoparticles (Ag, Au, and Au@SiO2) are compared. The activated oxygen species on silver surfaces exhibits the strongest oxidation ability for its lowest reaction barriers of dehydrogenations. This work demonstrates that silver catalyst should be an excellent candidate for the heterogeneous photocatalysis, which can concurrently enhance oxygen dissociation and oxidative dehydrogenation reactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.