The purpose of this study was to present and biomechanically evaluate several variations of the Nordic hamstring exercise (NHE), achieved by altering the slope of the lower leg support and by asumming different hip flexion angles. Electromyographic and 2D kinematic measurements were conducted to analyse muscle activity (biceps femoris, semitendinosus, gluteus maximus, erector spine and lateral head of the gastrocnemius), knee and hip joint torques during 6 variations of NHE. The study involved 18 adults (24.9 ± 3.7 years) with previous experience in resistance training, but with little or no experience with NHE. Increasing the slope of the lower leg support from 0° (standard NHE) to 20° and 40° enabled the participants to perform the exercise through a larger range of motion, while achieving similar peak knee and hip torques. Instructions for increased hip flexion from 0° (standard NHE) to 25°, 50° and 75° resulted in greater peak knee and hip torque, although the participants were not able to maintain the hip angle at 50° nor 75°. Muscle activity decreased or remained similar in all modified variations compared to the standard NHE for all measured muscles. Our results suggest that using the presented variations of NHE might contribute to optimization of hamstring injury prevention and rehabilitation programs, by providing appropriate difficulty for the individual’s strength level and also allow eccentric strengthening at longer hamstring lengths.
Falls are a major cause of injury and morbidity in older adults. To reduce the incidence of falls, a systematic assessment of the risk of falling is of paramount importance. The purpose of this systematic review was to provide a comprehensive comparison of the diagnostic balance tests used to predict falls and for distinguishing older adults with and without a history of falls. We conducted a systematic review of the studies in which instrumented (force plate body sway assessment) or other non-instrumented balance tests were used. We analyzed the data from 19 prospective and 48 retrospective/case-control studies. Among the non-instrumented tests, the single-leg stance test appears to be the most promising for discrimination between fallers and non-fallers. In terms of body sway measures, the center-of-pressure area was most consistently associated with falls. No evidence was found for increased benefit of the body sway test when cognitive tasks were added, or the vision was eliminated. While our analyses are limited due to the unbalanced representation of different test and outcome measures across studies, we can recommend the single-leg test for the assessment of the risk of falling, and the measurements of body sway for a more comprehensive assessment.
Full bibliographic details must be given when referring to, or quoting from full items including the author's name, the title of the work, publication details where relevant (place, publisher, date), pagination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award.
It has been shown that resistance exercise (RT) is one of the most effective approaches to counteract the physical and functional changes associated with aging. This systematic review with meta-analysis compared the effects of RT, whole-body vibration (WBV), and electrical muscle stimulation (EMS) on muscle strength, body composition, and functional performance in older adults. A thorough literature review was conducted, and the analyses were limited to randomized controlled trials. In total, 63 studies were included in the meta-analysis (48 RT, 11 WBV, and 4 EMS). The results showed that RT and WBV are comparably effective for improving muscle strength, while the effects of EMS remains debated. RT interventions also improved some outcome measures related to functional performance, as well as the cross-sectional area of the quadriceps. Muscle mass was not significantly affected by RT. A limitation of the review is the smaller number of WBV and particularly EMS studies. For this reason, the effects of WBV and EMS could not be comprehensively compared to the effect of RT for all outcome measures. For the moment, RT or combinations of RT and WBV or EMS, is probably the most reliable way to improve muscle strength and functional performance, while the best approach to increase muscle mass in older adults remains open to further studies.
Shear-wave electrography (SWE) is a method used to assess tissue elasticity. Recently, it has been used to assess muscle stiffness, but the reliability of SWE for this purpose has not been thoroughly investigated. The purpose of this study was to evaluate the repeatability and reproducibility of SWE on porcine meat specimens and the human biceps femoris muscle. Measurements on meat specimens (n = 20) were performed by three raters and with a custom-built device that allowed constant application force. Measurements on human participants (n = 20) were performed by two raters in relaxed and stretched muscle positions on two visits. Most aspects of repeatability and reproducibility were good or high, with intra-class correlation coefficient (ICC) values above 0.70. Minimal detectable changes were lower in a relaxed (6–10%) than stretched (15-16%) muscle position. In conclusion, SWE is a reliable tool for assessing muscle stiffness if the muscle is examined in relaxed condition, while changing the force applied with the probe for as little as 1.5 N results in significantly lower repeatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.