In this paper, we present a computer-aided detection (CAD) method to extract and use internal features to reduce false positive (FP) rate generated by surface-based measures on the inner colon wall in computed tomographic (CT) colonography. Firstly, a new shape description global curvature, which can provide an overall shape description of the colon wall, is introduced to improve the detection of suspicious patches on the colon wall whose geometrical features are similar to that of the colonic polyps. By a ray-driven edge finder, the volume of each detected patch is extracted as a fitted ellipsoid model. Within the ellipsoid model, CT image density distribution is analyzed. Three types of (geometrical, morphological and textural) internal features are extracted and applied to eliminate the FPs from the detected patches. The presented CAD method was tested by a total of 153 patient datasets in which 45 patients were found with 61 polyps of sizes 4-30 mm by optical colonoscopy. For a 100% detection sensitivity (on polyps), the presented CAD method had an average FPs of 2.68 per patient dataset and eliminated 93.1% of FPs generated by the surface-based measures. The presented CAD method was also evaluated by different polyp sizes. For polyp sizes of 10-30 mm, the method achieved mean number of FPs per dataset of 2.0 with 100% sensitivity. For polyp sizes of 4-10 mm, the method achieved 3.44 FP per dataset with 100% sensitivity.
Electronic colon cleansing (ECC) aims to segment the colon lumen from a patient abdominal image acquired using an oral contrast agent for colonic material tagging, so that a virtual colon model can be constructed. Virtual colonoscopy (VC) provides fly-through navigation within the colon model, looking for polyps on the inner surface in a manner analogous to that of fiber optic colonoscopy. We have built an ECC pipeline for a commercial VC navigation system. In this paper, we present an improved ECC method. It is based on a partial-volume (PV) image-segmentation framework, which is derived using the well-established statistical expectation-maximization algorithm. The presented ECC method was evaluated by both visual inspection and computer-aided detection of polyps (CADpolyp) within the cleansed colon lumens obtained using 20 patient datasets. Compared to our previous ECC pipeline, which does not sufficiently consider the PV effect, the method presented in this paper demonstrates improved polyp detection by both visual judgment and CADpolyp measure.
In this paper, we propose a new computer aided detection (CAD) technique to utilize both global and local shape information of the colon wall for detection of colonic polyps. Firstly, the whole colon wall is extracted by our mixture-based image segmentation method. This method uses partial volume percentages to represent the distribution of different materials in each voxel, so it provides the most accurate information on the colon wall, especially the mucosa layer. Local geometrical measure of the colon mucosa layer is defined by the curvature and gradient information extracted from the segmented colon-wall mixture data. Global shape information is provided by applying an improved linear integral convolution operation to the mixture data. The CAD technique was tested on twenty patient datasets. The local geometrical measure extracted from the mixture segmentation represents more accurately the polyp variation than that extracted from conventional label classification, leading to improved detection. The added global shape information further improves the polyp detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.