It is well known that most cement matrix materials are hydrophilic. For structural materials, hydrophilicity is harmful because the absorption of water will induce serious damage to these materials. In this study, crumb rubber was pretreated by partial oxidation and used as an additive to develop a hydrophobic rubberized cement paste. The pretreated crumb rubber was investigated using Fourier-transform infrared spectrometry (FT-IR) to understand the function groups on its surface. The pyrolysis oil adsorbed on the surface of the crumb rubber was observed by FT-IR and nuclear magnetic resonance (NMR) spectroscopy. A colloid probe with calcium silicate hydrate (C–S–H) at the apex was prepared to measure the intermolecular interaction forces between the crumb rubber and the C-S-H using an atomic force microscope (AFM). Pure cement paste, cement paste with the as-received crumb rubber, and cement paste with pretreated crumb rubber were prepared for comparison. FT-IR, X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to understand the microstructure of the pastes. The static contact angle was used as the index of the hydrophobicity of the pastes. Experimental results showed that the hardened cement paste containing partially oxidized crumb rubber had excellent hydrophobic properties with an insignificant reduction in the compressive strength.
Surfactant films on solid surfaces have attracted much attention because of their scientific interest and applications, such as surface treatment agent, or for micro- or nano-scale templates for microfluidic devices. In this study, anionic surfactant sodium dodecyl sulfate (SDS) solutions with various charged inorganic salts was spread on a glass substrate and dried to form an SDS thin film. Atomic force microscopy (AFM) was employed to observe the micro-structure of the SDS thin film. The effects of inorganic salts on the morphology of the SDS film were observed and discussed. The results of experiments demonstrated that pure SDS film formed patterns of long, parallel, highly-ordered stripes. The existence of the inorganic salt disturbed the structure of the SDS film due to the interaction between the cationic ion and the anionic head groups of SDS. The divalent ion has greater electrostatic interaction with anionic head groups than that of the monovalent ion, and causes a gross change in the morphology of the SDS film. The height of the SDS bilayer measured was consistent with the theoretical value, and the addition of the large-sized monovalent ion would lead to lowering the height of the adsorbed structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.