Collecting sweat and monitoring its rate is important for determining body condition and further sweat analyses, as this provides vital information about physiologic status and fitness level and could become an alternative to invasive blood tests in the future. Presented here is a one-dollar, disposable, paper-based microfluidic chip for real-time monitoring of sweat rate. The chip, pasted on any part of the skin surface, consists of a skin adhesive layer, sweat-proof layer, sweat-sensing layer, and scale layer with a disk-shape from bottom to top. The sweat-sensing layer has an impressed wax micro-channel containing pre-added chromogenic agent to show displacement by sweat, and the sweat volume can be read directly by scale lines without any electronic elements. The diameter and thickness of the complete chip are 25 mm and 0.3 mm, respectively, permitting good flexibility and compactness with the skin surface. Tests of sweat flow rate monitoring on the left forearm, forehead, and nape of the neck of volunteers doing running exercise were conducted. Average sweat rate on left forearm (1156 g·m−2·h−1) was much lower than that on the forehead (1710 g·m−2·h−1) and greater than that on the nape of the neck (998 g·m−2·h−1), in good agreement with rates measured using existing common commercial sweat collectors. The chip, as a very low-cost and convenient wearable device, has wide application prospects in real-time monitoring of sweat loss by body builders, athletes, firefighters, etc., or for further sweat analyses.
Acoustic radiation forces have been extensively studied regarding static particles, cell patterning, and dynamic transportation. Compared with standing wave manipulation, traveling wave manipulation can be more easily modulated in real time and has no matching requirement between the size of the resonant cavity and the sound frequency. In this work, we present an efficient, multi-layer microparticle pattern technique in a 3D polygon cavity with a traveling bulk acoustic wave. There are two types of excitation modes: the interval excitation mode (IEM) and the adjacent excitation mode (AEM). We conducted theoretical and simulation analyses, and our results show that both of these modes can form particle arrays in the resonant cavity, which is in accordance with the experimental results. The array spacings in the IEM and AEM were about 0.8 mm and 1.3 mm, respectively, while the acoustic frequency was 1MHz. Double-layer particle patterns were arrayed by a double in the resonant cavity. The spacing between the two layers was set at 3.0 mm. The line spacings were about 0.4 mm in both layers. The line width was 0.2 mm, which was larger than the single layer. The results show that ultrasonic traveling waves are a feasible method to manipulate particles and cells that form 3D patterns in particle–fluid flows.
Oxidative stress-mediated excessive accumulation of ROS in the body destroys cell homeostasis and participates in various diseases. However, the relationship between oxidative stress-related genes (ORGs) and tumor microenvironment (TME) in gastric cancer remains poorly understood. For improving the treatment strategy of GC, it is necessary to explore the relationship among them. We describe the changes of ORGs in 732 gastric cancer samples from two data sets. The two different molecular subtypes revealed that the changes of ORGs were associated with clinical features, prognosis, and TME. Subsequently, the OE_score was related to RFS, as confirmed by the correlation between OE_score and TME, TMB, MSI, immunotherapy, stem cell analysis, chemotherapeutic drugs, etc. OE_score can be used as an independent predictive marker for the treatment and prognosis of gastric cancer. Further, a Norman diagram was established to improve clinical practicability. Our research showed a potential role of ORGs in clinical features, prognosis, and tumor microenvironment of gastric cancer. Our research findings broaden the understanding of gastric cancer ORGs as a potential target for individualized treatment of gastric cancer and a new direction to evaluate the prognosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.